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ARTICLE INFO ABSTRACT

Available online 11 April 2015 The frequent-itemset lattice (FIL) is an effective structure for mining association rules. However,
building an FIL for a modified database requires a lot of time and memory. Currently, there is no
Keywords: approach for updating an FIL with deleted transactions. Therefore, this paper proposes an
E:;:ur:;?fgimset lattice approach for maintaining FILs for transaction deletion without rescanning the original database
Transaction deletion if the number of eliminated transactions is smaller than the threshold determined based on the
pre-large and diffset concepts. A diffset-based approach is first used for fast building an FIL.
Then, two proposed approaches (tidset-based and diffset-based) are used for updating the FIL
with transaction deletion. The experiment was conducted to show that the diffset-based

approach outperforms the tidset-based and the batch-mode approaches.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Association rule (AR) mining [1,15,24] is an important problem, which attracts so much attention of scientists, in data mining and
knowledge discovery. They have wide applications, such as basket data analysis, semantic web mining, text mining and so on. The
traditional methods for mining ARs are divided into two phrases: (i) Mining frequent itemsets (FIs) from databases [5,7,8,18] and
streaming databases [4,19] and (ii) mining ARs from FIs. According to the experiments, phase (ii) is easily implemented but it requires
alot of processing time. Recently, frequent-itemset lattices (FILs) and frequent-closed-itemset lattices (FCILs) have been proposed for
effectively mining ARs [13,20,21,25]. Building FILs/FCILs takes longer than getting frequent (closed) itemsets, but generating ARs from
FILs/FCILs is more efficient than doing so from frequent (closed) itemsets [17,20]. Therefore, mining ARs based on FILs/FCILs
outperforms the traditional approach when both phases of mining are considered.

In practical applications, databases are typically modified, meaning that transactions are often inserted or deleted. For instance,
inserted transactions will be added to database of the system when customers buy something. Besides, when customers return
their orders or there are a number of errors in orders, those will be removed from the transaction databases. Therefore, mining
ARs, frequent itemsets, class association rules and high utility patterns from modified databases [6,9,16,23] have attracted much
research interest. Fast-UPdate (FUP) [3] is the first algorithm for mining ARs from incremental databases. FUP is an Apriori-based
algorithm that generates candidates and repeatedly scans databases. Since then, methods based on FP-tree [9,10,12] and IT-tree
[14] have been developed for databases with transaction insertion. Incremental mining from sequence databases has also been
developed [2]. Some studies have considered transaction deletion [11]. However, there are no methods proposed for maintaining
FILs with transaction deletion.
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To deal with the problem of maintaining frequent itemsets for transaction modification, the pre-large concept is proposed to
reduce the need for rescanning an original database. With this concept, the original database does not need to be rescanned if the
number of deleted transactions or inserted transactions is equal to or less than a safety threshold, thus reducing the maintenance
cost. The pre-large concept was later used by La et al. [13] and Vo et al. [21] for fast updating FCILs with transaction insertion.

This paper proposes an approach for maintaining FILs with transaction deletion. First, the proposed approach uses the DFIL
algorithm based on the diffset concept to build FILs. Then, two methods for updating FILs (tidset-based and diffset-based methods)
with transaction deletion are used.

The rest of this paper is organized as follows. Section 2 presents the basic concepts and an effective algorithm based on the
diffset concept for building FILs. Two algorithms for maintaining FILs based on the tidset and the diffset concepts, respectively, with
transaction deletion are proposed in Section 3. Section 4 presents the results of experiments that compare the run time of the
proposed algorithms with that of the batch-mode approaches to show the effectiveness of the proposed algorithms. Finally,
Section 5 summarizes the results and offers some future topics.

2. Basic concepts
2.1. Frequent-itemset lattice building algorithm

Given a database D with n transactions, with each transaction including a set of items belonging to I, where I is the set of all items in
D. An example of a transaction database D; is presented in Table 1. The support of an itemset X, denoted by o (X), where X < I, is the
number of transactions in D which contains all the items in X. An itemset X is called a frequent itemset if o (X) > minSup x n, where
minSup is a given threshold.

Vo et al. [21] proposed the DFIL algorithm for building FILs. It is summarized as follows.

Definition 1. Let n(X) be a node of a k-itemset X. The child-nodes of n(X) based on the equivalence class property associated with
n(X) are:

Yec(n(X)) = {n(XA)|VAE A& X} (1

Definition 2. Let X be a k-itemset. The child-nodes of n(X) based on the lattice property associated with n(X) are:

yi(n(X)) = {n(Y)|Yisa (k + 1)—itemset,n(Y) & ygc(n(X)) and X C Y} (2)

Definition 3. Each node, n(X), in the FIL is a tuple:
X, t(X), Yec(n(X)), y1(n(X))), 3)
where:

- Xis an itemset;

- t(X) is the set of IDs associated with the transactions containing X; and

- Yec(n(X)) contains the child-nodes based on the equivalence class property associated with X.
- y(n(X)) contains the child-nodes based on the lattice property associated with X.

Theorem 1. Let n(XA) be a node of a k-itemset XA. Vn(XB) € yec(n(X)), if A is before B in the order of frequent 1-itemsets (sorted in
ascending order of frequency), then Zn(Y) € yec(n(XB)) U vy (n(XB)) so that n(Y) € y,(n(XA)).

Theorem 2. Let n(XA) be a node of a k-itemset XA. Yn(Z) € vy (n(X)), 2 n(Y) € y,(n(Z)) so that n(Y) € y,(n(XA)).

To understand the application of Theorems 1 and 2, the process of updating a lattice when n(XA) (a k-itemset) is created, is
described below. The existing algorithms [22] have to consider all nodes of Y in the four cases shown in Table 2.

Table 1
Example of a transaction database D;.
Transaction Items
1 ACT WV
2 G, DW
3 ACTW
4 A CDW
5 ACDTW
6 C,D, T
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Table 2
Four cases considered when updating the lattice.
Case Nodes of k-itemsets Nodes of (k + 1)-itemsets
1 Z & Yec(n(X)) Y € yec(n(2))
2 Z & yec(n(X)) Y& yi(n(2))
3 Z<yi(n(X)) Y € ¥ec(n(2))
4 Zey(n(X) Y€ yi(n(2))

However, from Theorems 1 and 2, for cases 1, 2 and 4 (Table 2), there are no node of k-itemsets, n(Y), in the current lattice as the
child nodes of n(XA) based on the lattice property. Therefore, the building FIL algorithm can easily find the nodes which belong to
Y.(n(XA)). The process first visits all child nodes based on the lattice property of n(X) (n(Y) € y.(n(X))). With each n(Y), the process
then visits all children based on the equivalence class property of n(Y) (n(YB) € yec(n(Y))). With each n(YB), if XA C YB, the process
only updates n(YB) which belongs to children based on the lattice property of n(XA) (n(YB) € vy, (n(XA))). Separating Children of a
node X on FIL into ygc(n(X)) and y;(n(X)) makes the proposed algorithm better than the algorithms by Vo and Le [22,23] because
it eliminates a large number of candidates in cases 1, 2, and 4 in Table 2.

Vo et al. [21] also used the diffset concept for fast building FILs. The diffset definition was first presented by Zaki and Gouda [24].
They proposed a method to fast determine the support associated with a k-itemset based on the support of the (k-1)-itemset. Let the
tidsets associated with XA, XB and XAB be t(XA), t(XB) and t(XAB), respectively. Then

t(XAB) = t(XA) N t(XB). 4)

Let d(XAB) = t(XA) \ t(XB) [24] be the TIDs that exist in t(XA) but not in t(XB). d(XAB) is called the diffset associated with XAB.
Let d(XA) be the diffset of XA and d(XB) be the diffset of XB, d(XAB) = d(XB) \ d(XA). The support associated with XAB is determined
as:

O(XAB) = 0(XA)-|d(XAB)|. (3)

Diffset associated with an itemsets XAB is the transaction IDs in the tidset associated with XA which do not exist in the tidset
associated with XB. Therefore, diffset-based approaches required less memory than tidset-based approaches. Besides, computing
the intersection between two tidsets consumes more time than computing the difference between two diffsets. In conclusion,
diffset-based approaches are always better than tidset-based approaches.

Fig. 1 presents the diffset-based algorithm for building FILs.

The DFIL algorithm is applied to the example database in Table 1 with minSup = 50% to illustrate its use. First, DFIL finds all
the frequent 1-itemsets and sorts them in ascending order of frequency. The result of this step is Iy = {A, D, T, W, C}. The
algorithm then uses the depth-first-search strategy to generate the candidates associated with each equivalence class. The frequent
k-itemsets are then combined with the remaining k-itemsets in this equivalence class to create the (k + 1)-itemset candidates. The
frequent itemsets from these candidates are used to create the frequent (k + 2)-itemsets. When each node X in the lattice is created,
the algorithm calls the procedure Update_Lattice to update the child nodes based on the lattice property associated with X, which is
created in the previous steps. For instance, the first frequent 1-itemset in I, A, is combined with the remaining frequent 1-itemsets
{D, T, W, C} to create the candidates {AD, AT, AW, AC}. However, AD is excluded because 0(AD) = 2 < minSup x n = 50% x 6 = 3.
The frequent 2-itemsets associated with the equivalence class A are thus {AT, AW, AC}. Then, the algorithm combines the first frequent
2-itemset in this list, AT, with the remaining frequent 2-itemsets in this list {AW, AC} to create the frequent 3-itemsets {ATW, AWC}. At
last, ATW is combined with AWC to create the frequent 4-itemset {ATWC}, finishing the processing of the equivalence class A. The
algorithm then similarly processes the remaining equivalence class {D, T, W, C}. The results for the example database are shown in
Fig. 2. Note that the dashed and solid lines represent child-nodes based on the lattice property and based on the equivalence class
property, respectively.

2.2. Pre-large concept

The pre-large concept was proposed that based on a safety threshold f to reduce the need of rescanning the original database for
efficiently maintaining association rules with transaction insertion. For transaction deletion, Hong et al. [10] proposed the following
formula for determining the safety number f:

where Sy is the upper threshold, S; is the lower threshold, and |D| is the number of original database D's transactions. When the
number of deleted transactions is equal to or less than f, the algorithm does not need to rescan the original database.

When two thresholds are used, each itemset has three cases: frequent, pre-large, and infrequent. This divides itemsets in the
original and new databases into nine cases [10], as presented in Table 3.
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Input: transaction database D with » transactions and frequent threshold minSup
Output: lattice containing all frequent itemsets of D

1. Generate null node, L, as the root of the lattice

2. Derive the frequent 1-itemsets F/; from D

3. for each 4; € FI}, the algorithm adds n(4;) = (4;, d(4,), null, null) to ye(L,0r)
4. Enumerate Lattice(FI,)

5. return L,,,;

Procedure Enumerate_Lattice(the nodes at level k FI})
1. for each I; € FI; do

let Fly; < {}

3. foreach [;€ FI;, with j >ido

4 X=1Lu I

5. dX) =dd)\d()

6. o(X) = o(l)) - |d(X)]
7.
8

N

if o(X) > minSup x n then

. add n(X) to yzc(l;) and y,(1)
9. add X to F[k+1

10. Update_Lattice(/;, X)
11. end for

12.  Enumerate_Lattice(F/;,)
13. end for

Procedure Update Lattice(n(P), n(X))
1. for each Child /; in y;(n(P)) do
2. for each Child J; in yc(f;) do
if X c ; then
add (7)) to 7,(X)

B

Fig. 1. DFIL algorithm.

Cases 2, 3,4, 7 and 8 do not affect the final large itemsets according to the weighted average of the counts. Case 1 may remove
existing large itemsets, and cases 5, 6 and 9 may add new large itemsets. If all large and pre-large itemsets with their counts are
retained after each pass, then cases 1, 5 and 6 can be easily handled. It has been theoretically shown that an itemset in case 9 cannot
possibly be large enough to become a frequent itemset in the final updated database as long as the number of deleted transactions is
smaller than f.

For example, consider the database in Table 1 with |D;| = 6. Assume that S;; = 50% and S; = 40%. Then, if the number of deleted

transactions is equal to or less than f = | 37046 | _ 1 the algorithm does not need to rescan the original database to determine the

support of infrequent itemsets, which are mined from the original database.

U

Ax1345 Dx2456 Tx1356 Wx12345 Cx123456

ATx4 AWXD

Fig. 2. Frequent-itemset lattice for database D; with minSup = 50% obtained by DFIL algorithm.
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Table 3
Nine cases of itemsets for transaction deletion.
Case Original - deleted Results
1 Large - large Large or pre-large or small, determined from existing information
2 Large - pre-large Always large
3 Large - small Always large
4 Pre-large - large Pre-large or small, determined from existing information
5 Pre-large - pre-large Large or pre-large or small, determined from existing information
6 Pre-large - small Large or pre-large, determined from existing information
7 Small - large Always small
8 small - pre-large Always small
9 small - small Pre-large or small, determined from existing information

3. Fast updated FIL algorithm for transaction deletion

Using the FIL building algorithm presented in Section 2, this paper proposes the tidset-based and the diffset-based approaches for
updating FILs (TiFU-FIL and DiFU-FIL) with transaction deletion.

Remark 1. Let n(XA) and n(XB) be a node of a k-itemsets XA and XB in the lattice. If d(XA) and d(XB) are unchanged then d(XAB) is
unchanged, therefore, there is no need to update n(XAB).

Based on Remark 1, the algorithm only considers the changed nodes which have deleted transactions.

3.1. Tidset-based approach (TiFU-FIL)

This section first introduced the proposed TiFU-FIL algorithm for updating FILs. It is presented in Fig. 3.

Algorithm: TiFU-FIL

Input:

- original database D

- safety threshold f'determined from D

- deleted transactions D’

- upper threshold Sy, and lower threshold S,

- FIL

Output: Updated FIL

Method:

1. If the FIL is empty, the algorithm builds the FIL for D’ using S; and computes the safety threshold /=

l(SU’SL)X|D’| .
Sy ’

2. If the number of transactions in D’ is larger than f, the algorithm calls the function FIL to build the FIL for D

- D’ using S, and computes f'= I%SDHDDJ;

3. The algorithm then

- clears the tidset information in each node in FIL;

- updates the node information in the first level of L;;

- mark the nodes in L, whose information changes and whose supports satisfy S;;

- calls the procedure UPDATE-FIL to update all the nodes in the FIL with L, as parameter;

- updates f=f- |D’|.

4.1f D is empty, then D = D’; otherwise, D =D - D".

Procedure UPDATE-FIL(L,)
1.for each /; € yec(L;) do

2. if [;is marked then

3 for each /; € ypc(L,), with j > i do

4 if /; is marked then

5. let O be the direct child node of /; and /;
6. if O exists then

7 1(0) = 1(l)) N «(ly)

8. if [#(O)| > 0 then

9 6(0) =o(0) - [((0)|

10. ifo(0) > S, x (|D] - |D’|) then
11. mark O

12. UPDATE-FIL(/)

Fig. 3. TiFU-FIL algorithm.
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U

ATXD AW
3

Fig. 4. The FIL after the first substep of step 3 for the second round of transaction deletion.

The complexity of TiFU-FIL algorithm depends on AD, the number of deletion transactions: (i) If AD < fthen the complexity (in the
worst case) of this algorithm is O(n) where n is the number of nodes in the lattice. (ii) If AD > fthen the complexity of this algorithm is
equal the complexity of DFIL algorithm, with the worst case is 0(2") where I is the number of items in database.

An example is given below to illustrate the process of TiFU-FIL in three rounds of transaction deletions with the initial database
D= 1,5, = 50%, and Sy = 60%.

3.1.1. First round (D; with the six transactions in Table 1)
The algorithm builds the FIL for S; = 50%,as shown in Fig. 2, which computes f = | St=5P1l | — | 06-0506 | _ 1 and set D = D;.

3.1.2. Second round (D, with transaction number 6 deleted)
Because the number of deleted transactions is equal to f, the algorithm skips step 2 and directly performs step 3 as follows.

1. The algorithm clears all the tidset information associated with all the nodes in the FIL (see Fig. 4).

2. The algorithm inserts the tidset information (only for deleted transactions) associated with the frequent 1-itemsets in the FIL and
then marks the updated nodes (Fig. 5).

3. The algorithm recursively calls the procedure UPDATE-FIL in depth-first search to update the tidset information of all the nodes in
the FIL. The result of this step is shown in Fig. 6.

U

3 4 4 3 4 3 4 5

Fig. 5. The FIL after the second substep of step 3 for the second round of transaction deletion.
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Y

ATWCx
3

Fig. 6. The FIL after the third substep of step 3 for the second round of transaction deletion.

4. The algorithm updates the safety threshold f=f— |Do]=1—1=0.
5. The algorithm updates the database D = D; — Ds.

Fig. 6 shows that only a small number of nodes whose tidset information was updated in the FIL are used to update the lattice.

3.1.3. Third round (D5 with transaction number 5 deleted)
Because [D3| = 1 > f = 0, the algorithm performs step 2.

1. The algorithm calls the DFIL algorithm to create the FIL for D with only four transactions (1, 2, 3 and 4). The result of this step is
shown in Fig. 7.

2. The algorithm calculates the safety threshold f = | &u=31xIP/ | — | 06-85<4| — 0, Therefore, for the fourth round of deletion, the
algorithm always rebuilds the FIL.

Note that in actual applications, the number of transactions deleted is usually much less than that in a database. Thus, fis not zero
in the case.

{3

Ax134 Dx24 Tx13 Cx1234 Wx1234

Fig. 7. The FIL after the first substep of step 2 for the third round of transaction deletion.
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UDATE-PFIL (L,)

1.for all /; € ypc(L;) do

2. if [; is marked then

3. foreach /; € ypc(L,), with j > i do

4. if /; is marked then

5. let O be the directly child node of /; and /;
6. if O exists then

7. if level of L, is equal to 1 then

8. d(0) =d(l) \ d(1)

9. else

10. d(0) =d(l) \ d(l))

11. 6'(0)=c'(l) - |d(0)|

12. if 67(0) > 0 then

13. 6(0) =c(0) +6'(0)

14. ifo(0) > S, x (|D| —|D’|) then
15. mark O

16. UDATE-PFIL(/)

Fig. 8. DiFU-FIL algorithm.

DWCxD

Fig. 9. FIL in step 3 for the second round of transaction deletion obtained using the DiFU-FIL algorithm.

3.2. Diffset-based approach (DiFU-FIL)

In this section, the diffset-based maintenance approach (DiFU-FIL) of an FIL is proposed (see Fig. 8). Note that only the procedure
UDATE-FIL is given since the other procedures are the same as those in Fig. 3.

To use the diffset concept, each node in the lattice has a temporal support (") field. The 0" field is associated with a node of a
frequent 1-itemset and denotes the number of items in its tidset (only for deleted transactions). The o' value associated with a
node of a frequent k-itemset XAB (k > 1) is determined using Eq. (6). It can be rewritten as follows:

0" (XAB) = 0" (XA)-|t(XAB)], (7)
Table 4
Statistical summary of experimental databases.
Database # of trans # of items
Accidents 340,183 468
Mushroom 8,124 120
Pumsb_star 49,046 7117

Retail 88,162 16,470
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—~ 35
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.E 25 —o—DFIL
2 —#—TiFU-FIL
l'i —4— DiFU-FIL
0.5
0+ ety : ; A —
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P ) 3 o o %> Number of transactions

Fig. 10. Execution time of TiFU-FIL, DiFU-FIL (Sy = 55% and S, = 52%) and DFIL (Sy = 55%) for Accidents.

50
45

35 4
30 -
25
20 -
15 -
10

Time (s)

DFIL TiFU-FIL DiFU-FIL

Fig. 11. Total time for ten runs of TiFU-FIL, DiFU-FIL (Sy = 55% and S; = 52%) and DFIL (Sy = 55%) for Accidents.

where A is before B in the order of the counts of frequent 1-itemsets and |t(XAB)| is the number of elements in the diffset of XAB.
To illustrate the DiFU-FIL algorithm, the FIL in step 3 for the second round of transaction deletions from Section 3.2 is shown in
Fig. 9.
The resulting FIL in Fig. 9 is clearly better than that in Fig. 6 in terms of memory usage, which also speeds up the execution time.
Hence, DiFU-FIL is more effective than TiFU-FIL.

4. Experimental results

All experiments presented in this section were performed on a laptop with an Intel i3 M380 2.53-GHz CPU and 2 GB of RAM
running Windows 7. All the programs were coded in C#. The experiments were conducted using the following UCI databases':
Accidents, Mushroom, Pumsb_star, and Retail. A statistical summary of these databases is shown in Table 4.

Hong et al. [10] proposed the method for maintaining pre-large tree structure in incremental mining. Then, frequent itemsets
were generated from the tree. Finally, association rules were mined from the above frequent itemsets. This is a traditional method
to maintain association rules. On the other hand, this paper proposes an approach for maintaining the frequent-itemset lattice. This
is a lattice-based approach for maintaining association rules. In this paper, we focus on the comparison of lattice-based approaches.

In this section, the total execution time of the TiFU-FIL, DiFU-FIL and DFIL algorithms are compared. Note that TiFU-FIL and DiFU-
FIL use an upper threshold Sy and a lower threshold S;. DFIL uses only an upper threshold Sy to build the FIL.

Fig. 10 compares the total run time of DFIL, TiFU-FIL and DiFU-FIL for the Accidents database. The results show that the time
required for FIL maintenance is smaller than that for building an FIL using a batch mode. For 10 transaction deletions, the total runtime
for DFIL, TiFU-FIL and DiFU-FIL are 44.389, 3.557 and 0.281 s, respectively (Fig. 11).

Fig. 12 compares the total run time of DFIL, TiFU-FIL and DiFU-FIL for the Mushroom database. Then, Fig. 13 shows the total runtime
for 10 transaction deletion. The total runtime of DFIL, TiFU-FIL and DiFU-FIL are 4.282, 0.594 and 0.468 s, respectively.

Similar results were obtained for the Pumsb_star and Retail databases (Figs. 14 to 17). Updating the lattice with transaction
deletion is always faster than using batch mode, and the diffset-based approach is more efficient than the tidset-based approach.

1 http://fimi.cs.helsinki.fi/data/.
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Fig. 12. Execution time of TiFU-FIL, DiFU-FIL (Sy = 10% and S; = 9%) and DFIL (Sy = 10%) for the Mushroom database.
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DFIL TiFU-FIL DiFU-FIL

5. Conclusions and future work

87

This study proposes two approaches (tidset-based and diffset-based) for maintaining FILs with transaction deletion. Firstly, DFIL
is used for fast building an FIL from a database. After that, when some transactions are deleted, TiFU-FIL or DiFU-FIL is used for
updating the FIL. The pre-large concept is used in TiFU-FIL/DiFU-FIL to update the FIL without rescanning the original database if
the number of deleted transactions is smaller than or equal to the calculated safety threshold f. The experimental results show that
the two approaches outperform the batch-mode algorithm in building FILs, with the diffset-based approach (DiFU-FIL) being more
efficient than the tidset-based approach (TiFU-FIL).

In future work, we will study how to store more information to avoid rescanning the original database. Besides, using a frequent-
closed-itemset lattice (FCIL) for generating association rules is very effective. Therefore, a method for updating FCILs with transaction

deletion will be developed.

3
25 ———————t————
2
=
o 15 ——DFIL
=)
s —=—TiFU-FIL
1
==t DiFU-FIL
0.5 ’.—_.;._—.__—.;.:.;.A.*
0 T T T T T T T T T \

48948 48850 48752 48654 48556 48458 48360 48262 48164 48066

Number of transactions

Fig. 14. Execution time of TiFU-FIL, DiFU-FIL (Sy = 40% and S; = 38%) and DFIL (Sy = 40%) for the Pumsb_star database.
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Fig. 15. Total time for ten runs of TiFU-FIL, DiFU-FIL (S, = 40% and S, = 38%) and DFIL (S = 40%) for the Pumsb_star database.
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Fig. 16. Execution time of TiFU-FIL, DiFU-FIL (Sy = 80% and S; = 78%) and DFIL (S = 80%) for the Retail database.
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Fig. 17. Execution time of TiFU-FIL, DiFU-FIL (S = 80% and S, = 78%) and DFIL (S, = 80%) for the Retail database.
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