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ABSTRACT
The Internet of Things (IoT) is a design implementation of em-
bedded system design that connects a variety of devices, sensors,
and physical objects to a larger connected network (e.g. the Inter-
net) which requires human-to-human or human-to-computer inter-
action. While the IoT is expected to expand the user’s connectivity
and everyday convenience, there are serious security considerations
that come into account when using the IoT for distributed authenti-
cation. Furthermore the incorporation of biometrics to IoT design
brings about concerns of cost and implementing a ‘user-friendly’
design. In this paper, we focus on the use of electrocardiogram
(ECG) signals to implement distributed biometrics authentication
within an IoT system model. Our observations show that ECG bio-
metrics are highly reliable, more secure, and easier to implement
than other biometrics.

CCS Concepts
•Security and privacy → Biometrics; Embedded systems secu-
rity; Hardware-based security protocols; •Hardware→Bio-embedded
electronics; Emerging interfaces;

Keywords
Internet of Things (IoT), Biometrics, Authentication, Embedded
Design, Security, ECG, Reliability, NIST Statistical Test Suite.

1. INTRODUCTION
IoT networks can be generalized as a set of distributed embedded

systems communicating over some pre-determined communication
channel(s). These channels exist not only in the expected types of
communication (i.e. Ethernet, wireless, Bluetooth), but also in the
less widely used network protocols (e.g. Zigbee, WiMax). As with
any distributed system there are performance, optimization, and se-
curity constraints that must be taken into account from the early
design stages that will later be implemented. There is a rise in the
use and adaptation of IoT devices for scenarios such as: a means of
authenticating users and customers, ensuring the condition of one’s
home appliances, keeping track of the location of family members
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Figure 1: The Internet of Biometric Things (IoBT) Applications.

and identifying the health of patients. With the constant expansion
of IoT devices into everyday use for the purpose of simplifying the
lives of humans, there comes an expansion of possible attack vec-
tors and sources for vulnerabilities. For this reason, as the market
for IoT/embedded devices grows, it is the responsibility of devel-
opers to take into account the security needs and privacy concerns
of their users and customers. Unfortunately, as with any optimiza-
tion problem, the constraints of the scenario, operation parameters
and needs of the consumer will differ by device, situation and im-
plementation.

Different applications of IoT-centric usage or modeling can be
found in the form of finger print authentication, vein recognition,
smart gun implementations, smart door locks, and other forms of
locality checking or two-factor authentication[1, 7, 24]. As Fig-
ure 1 illustrates the IoT, and by extension biometric implementa-
tions of the IoT model, are already in wide use. These common
day implementations range from medical devices (such as heart
monitors) to home security applications including smart door locks
and window/door sensors. There are more obvious applications:
for instance, traffic monitoring or remote sensor networks for de-
termining weather patterns or spending habits of individuals. In
some cases the IoT is being used to track a family’s habits and per-
sonal information as a means of auditing the behavior of family
members (e.g. children brushing teeth) [33]. Use of the Internet
of Things has expanded into a variety of different markets, one of
the more expansive fields being biomedical/biometric. Here we
notice a combination of biometric authentication coupled with the
augmentation of distributed, or cloud-computing, to form large net-
works of interconnected devices that can be used for real-time data



exchange and integration [7]. This distributed computational power
can further enhance two-factor authentication by merging larger ac-
cess control mechanisms with locality information passed via an
embedded, or IoT, device. As with any growing technology, espe-
cially when mixed into security authentication and policies, there
are a variety of constraints and concerns that must be contemplated
and tackled prior to its implementation and use.

One of the greater challenges of having widespread adoption of
IoT devices is due to designers and developers either incorrectly
implementing security, as discussed in Section 2.2, or a complete
disregard to the importance of incorporating security before proto-
typing. The complexity of the security field is daunting, but even
this should not deter research and implementation of new exciting
expansions of IoT functionality and behavior [30, 25, 22, 35]. Nei-
ther does there seem to be a limit to the scenarios and utilization
of embedded real-time systems. As the excitement and potential
of IoT devices grows and more concrete implementations of new
concepts and designs come forth, the need for convincing research
into these applications, their security and reliability is a must.

Implementations of biometric-centric authentication can be seen
in the military and public sectors with the development of devices
such as “Identilock”[24], where fingerprint based authentication
ensures that firearms can only be fired by an authorized user. This
form of two-factor authentication generates the usual concern around
reliability, the user’s ability to depend on faithful implementation
of the security design and implementation of any fail-safes desired
(e.g. ‘overrides’ for a locked devices; a door key). With this surge
of interest and early adaptation of biometric authentication and
vigorous expansion of the ‘Internet of Things’, it is obvious that
effort needs to be placed on the design considerations for imple-
menting biometric authentication over a distributed network of em-
bedded/IoT devices. In the case of “Identilock”, one could couple
ECG biometric data with fingerprint authentication to ensure that
law enforcement do not use their weapons while under duress[4].
Foreseeable complications could include defining the difference
between fear and anger. While the implementation is considered
out of scope for this paper, with research this functionality could
be expanded to allow for a biometric two-factor authentication in
other scenarios as well. These forms of biometric authentication
can be generalized as an other method for providing a password, or
PIN, to a challenge-response pair. With this modeling in mind, one
can see why biometrics/biometric authentication is more desirable,
and also potentially more secure than traditional methods of access
control. In this paper, we are using biometrics (mainly ECG and
iris recognition) to make IoT devices more secure, robust, and user
friendly.

Our main contributions can be summarized as follows:

1. Investigate two biometric modalities for the purpose of key
generation. This required the evaluation and examination
of generated keys based on uniqueness, reliability and key
length.

2. Analysis of the keys generated using the two modalities, demon-
strated that the ECG has better performance than the iris
recognition in terms of the reliability, uniquess and key length.
We were able to definitively show that ECG-based key gen-
eration is the more desirable methodology over the use of
iris-based key generation.

3. Discussion of embedded real-time system implementation,
security and adoptability. Background exploration of IoT
devices, common complications and mistakes made in their
implementation, and the further exacerbation due to the in-

corporation of security overhead to these already constrained
systems.

4. Investigation of IoT architecture for adoptability of biometric
authentication. Requiring study of the known limitations and
capabilities of IoT peripherals to determine the most adventa-
geous method for incorporating biometric authentication into
exisiting systems while minimizing the need for alteration or
redesign of current embedded devices.

5. Postualte use cases, implementation considerations, and ease
of adoption for authentication via biometric readings. From
alternate uses for biometric authentication to coupled imple-
mentation with other forms of biometric authentication to
form a biometric two-factor authentication scheme. Future
capabilities of ECG-based biometric readings are also spec-
ulation with alternative uses for the same collected data.

In the following, we first present the motivation and challenges
that inspired our work in Section 2. In Section 3, we introduce the
methodology used for generating keys from biometrics in terms of
average key length, reliability, min-entropy, uniqueness and ran-
domness. Section 4 shows the results of biometric key generation
from ECG and iris databases along with evaluating the randomness
of both modalities using the NIST statistical test. In Section 5 we
illustrate how the ECG data can be incorporated into IoT devices
along with consideration of security considerations brought about
by implementation. We will discuss the merits of biometric au-
thentication and its implementation in IoT devices in Section 6 and
conclude the paper in Section 7.

2. MOTIVATION AND CHALLENGES
The exponential growth in the number of connected smart de-

vices, and the resulting volumes of data, pose significant challenges
for information security. Most cryptographic primitives rely on the
ability to generate, store and retrieve unique ‘keys’. These crypto-
graphic keys (unencrypted) are used as an input to the known en-
cryption engine to generate encrypted output that is used to authen-
ticate the device or information. A shared cryptographic key en-
ables strong authentication. Candidate sources for creating such a
shared key include biometrics and physically unclonable functions
(PUF) [36]. However, maintaining large databases of PUF chal-
lenge response pairs and dealing with PUF errors makes it difficult
to use PUFs reliably [41]. The use of biometrics has been widely
spread over the problems of identification, authentication, and key
generation[12, 34, 27, 3, 5]. Most of the biometric authentication
research is suffering from issues of universality, uniqueness, mea-
surability, acceptability, and circumvention characteristics. In this
paper, we introduce the use of a new biometric modality known
as the electrocardiogram (ECG) signal. The ECG modality is per-
missible given that it addresses the problems encountered by other
biometric authentication research. These heart signals can be found
in virtually all living humans (Universality). The authentication ca-
pabilities of ECG signals for circumscribed groups of individuals
has been shown (Uniqueness) [2]. ECG signals can be easily ac-
quired using suitable devices (Measurability)[26]. Electrocardio-
gram modality has been shown to perform accurately for subsets
of the population (Performance) [27],[28]. The “off the-person”
approach has made use of ECG signals acceptable (Acceptability),
and they are not easily spoofed as it depends on an internal body or-
gan, the heart (Circumvention). It also has inherent real-time signs
of liveliness, making it extremely difficult to steal and emulate a
person’s ECG signal.



Figure 2: Gartner 2012 Hype Cycle of emerging technolgoies.
Source: Gartner Inc. [23]

2.1 IoT Adoption and Expansion
The ‘Internet of Things’ and IoT devices have been on the rise

as of late due to a shift towards more ‘cloud-centric’ models of
interconnected devices performing actions or integrating with the
everyday life of users. Over time the hype and expectations of IoT
technology have changed, but the overall desire to have a more vi-
brant and interconnected ‘smart’ Internet still runs deep in the hu-
man conciousness[20]. As one can see in the Figure 2, the Internet
of Things will continue to grow and develop, all while influenc-
ing its domain by providing new evolving data and the required
computational resources for allowing users and developers to cre-
ate revolutionary applications[20]. With this expansion of use cases
and implementations comes a requirement to examine the security
needs and specifications that can secure the new flux of information
and data from prying eyes or malicious action.

2.2 IoT Design & Security Considerations
IoT is generally a large number of wireless devices that form

a network. The resulting ‘Internet of Things’ is as powerful as
it is susceptible to the same vulnerabilities and security flaws as
any computer system or distributed system of computers. Secur-
ing any stored data, ensuring access control to sensitive or critical
areas of function, encrypting communications channels and authen-
ticating new/connected devices are all aspects of IoT security that
must be taken into consideration when designing everything from
a single IoT device to a distributed network of IoT devices. Secu-
rity considerations for IoT devices are the same as those required
for distributed systems or embedded devices. One must secure not
only the information being interacted with on an internal level, but
also ensure that any data/information exported by the device must
maintain a level of security assurance desired by the developer and
user. Work by West et. al. [40] has taken an in-depth analysis of the
complications and errors that occur when security is implemented
in fitness tracking IoT devices, along with a detailed postulation
on how to suitably implement security policies and principles in an
all-encompassing method.

Common erroneous implementations of security lead to issues
ranging from denial of service vulnerabilities, falsification of data
(both local and remote users), stealing or abuse of sensitive in-
formation, compromise of device integrity, or as simple as incor-
rect handling of shared data leading to sensitive information be-
ing leaked. A developer’s focus can be placed at a variety of ab-
stractions, all with the intention of making a device, or larger sys-

tem, more secure and trustworthy. Beyond the security concerns,
embedded systems have greater constraints in system design then
other computer systems. Being an embedded system, the non-
security considerations boil down to power consumption, total PCB
space, heat distribution, production costs, and component operation
conditions. All of these different aspects play into the constraints
and optimization of designing any secure embedded/IoT device.

3. INTERNET OF BIOMETRIC THINGS AU-
THENTICATION

3.1 Biometrics in IoT
Biometric authentication, identification and key generation sys-

tems have assumed increasing importance in recent years. There
are two types of biometric methods that can be categorized into
internal and external physiological traits of humans. Each of the
biometric modalities, including fingerprint based and iris based ap-
proaches, exhibits particular strengths and weaknesses. Finger-
prints are very popular due to their low-cost implementation and
well-developed feature extraction approaches. Iris identification
is acclaimed for its high-level security, providing unique features
even for identical twins. Even though these kind of biometrics are
common, they are easy for attackers to access and are not robust
against cloning. For instance, our fingers are involved in many
daily tasks such as touching keyboards and doorknobs and can be
easily replicated to bypass biometric systems. Iris systems are sus-
ceptible to being spoofed by printed photos. They are also expen-
sive to implement. Electrocardiogram (ECG), Phonocardiogram
(PCG), and Photoplethysmogram (PPG) are cardiovascular biomet-
rics that are emerging as interesting choices for biometric systems
that are internal physiological signals. Based on [31], bioelectri-
cal signals recorded from the heart (electrocardiography, ECG) are
distinctive enough for each individual person to be used for bio-
metric applications, with the additional bonus of being inherently
difficult, though not impossible, to forge. Also, they can be mea-
sured using low cost devices. Unlike other biometric systems, ECG
signals can be monitored for prolonged periods of time: for exam-
ple to continuously authenticate the user of a protected device after
initial authentication. The Apple Watch applies the same principle
of continuous monitoring, requiring the user to authenticate their
identity with a password when the watch is strapped to their wrist,
but then monitoring for constant heartbeat to avoid the need for
further authentication. As additional security, once there is an in-
terruption in the hearbeat detected by the watch, the watch locks
itself down.

For the proposed key generation and authentication methodol-
ogy there should be a requirement of two phases for implemented
use: an enrollment phase where a user registers their ECG signal
to generate keys, and an authentication phase where user provided
data generates a new key that is compared to previous stored keys.
Section 5 shows implementation of these phases for a postulated
IoT device.

3.2 Biometric Key Generation
Frankly speaking, biometrics are suffering from different sources

which are correlations to the original signal. For instance, the bi-
ological signal frequencies slightly overlap each other and can not
be separated very well. Usually, the ECG signal suffers from dif-
ferent types of noises such as Electromyography (EMG), motion
artifacts and power line interface. Therefore, for getting an almost
clean signal, a pre-processing step is necessary that includes using
a low and a high pass filter. However, this can generate errors with



key generation. In order to overcome this limitation, we have con-
sidered a statistical approach to decline the intra-subject variation.
It is desirable for biometric key generation systems to have max-
imal variability between subjects but minimal variability within a
subject’s variability. To deal with this, first of all the ECG signal is
processed to remove artifacts. Then the feature extraction methods
are applied for all of the population.

1) Pre-processing:
ECG: In this paper, we have employed 4th Butterworth band pass
filter with cutoff frequency 1Hz-40Hz to eliminate various kinds
of noise in ECG signals based on empirical results. After filter-
ing, R peak detection is generally required to segment individual
heart beats and analyze the ECG signal. In this paper, we use the
R peak detection algorithm proposed by Pan-Tompkins [29]. Then,
we consider a fixed window by taking an identified R peak as a
reference to segment the ECG signal in terms of the R–R interval
(RR). ECG feature extraction has been applied to these segments.
The discrete wavelet transform is a popular technique for time and
frequency analysis. Since the ECG signal is quasi-stationary, we
have employed the wavelet transform as a feature extraction tech-
nique.
Iris: An iris recognition system like ECG authentication typically
consists of iris preprocessing and feature extraction. After localiza-
tion, segmentation, and normalization of the iris data [11] , Gabor
wavelet filter which is time-frequency transform, has been used as a
feature extraction [10]. Since by changing the parameters of Gabor
filter, the result has been changed, we have tried to consider an op-
timal one. In this work, we have only employed phase information
for feature extraction.

2) Background PDF: The feature elements from the same loca-
tion are extracted from the population and normalized into a stan-
dard normal distribution. Note that if a feature is determined as
non-Gaussian, it is removed from investigation. The normalized
probability density functions (PDF) of the population and subjects
are illustrated in Figure 3.

3) Bit extraction: This module aims to transform the real val-
ued features into a binary string of various lengths. The number of
bits are dependent on the parameters and statistics that have been
defined. A key will be selected if the standard deviation of the
feature within the subject is close to zero and if across subjects it
is large enough. Our approach for quantizing features to two bits
is most clearly illustrated in Figure 3. The population probability
density function of a feature is shown in blue. Statistical methods
are applied onto each feature to determine boundaries to quantize
the feature into one or more key bits. We have several input pa-
rameters which can be used to trade off reliability as well as output
parameters which will be used to select “reliable” features. Note
that all our parameters are illustrated on the left side of the PDF,
in Figure 3, but the right side will have similar parameters due to
symmetry of the zero-mean normal distribution.

In our approach, a feature space is partitioned into 2n equal-
width intervals with n denoting the intended number of bits to be
allocated. This partitioning is applied on the user PDF. The thresh-
olds are determined for optimal reliability for every given ECG fea-
ture in the space. The margin m determines the range of values in
which we would consider the feature as reliable (based on noise
statistics).

The boundaries (T hr1, T hr2) are calculated based on equal-width
interval partitioning. After determination of the boundaries, the
users can be enrolled. Because of variability within the subjects
some features might be reliable for some subjects but unreliable for
others. Therefore, our approach will only select reliable features
from each individual. Then the information of the reliable features

Figure 3: Illustration of the quantization scenario on a 2-bits.

of each user will be stored in the helper data during the enrollment
phase. In the authentication phase, the produced thresholds and
helper data will be applicable. Based on proposed work, if the fea-
ture can meet the boundary that has been defined earlier, then it
can be selected as a component key otherwise will be discarded. In
[21], and [18], ECG for biometric key generation and key obfusca-
tion have been investigated. But their approaches are based on the
optimization of the boundary based on the standard deviation from
entire subjects. Note that, based on [21], we can generate high re-
liable keys, but the key length will be reduced. But based on our
approaches, the number of key that can be generated is more than
their approaches. Since, we have some error in the reliability, we
can apply Wei’s technique [41], to increase the reliability.

4. PERFORMANCE OF BIOMETRICS KEY
GENERATION

In this section, we evaluate the security measurement of reliabil-
ity and min-entropy of the keys generated from ECG signals. To
investigate the reliability of the ECG recognition systems for per-
sonal authentication with smart door locks, we extract the keys at
different times from the same person to represent how the keys are
robust. Higher reliability corresponds to better agreement of the
keys and small intra-class variation. To prove that the keys are ran-
dom we considered min-entropy. Large entropy indicates excellent
distinction among the keys generated by different people and how
the keys are robust against an attacker. If the min-entropy value is
close to 1 that means it has good quality as a key. We present the
results in Table 1. Iris recognition is another biometric modality
for its high identification accuracy. We apply the same algorithm
with the same parameters on iris features as well to compare its
performance with ECG. The iris results are shown in the last col-
umn of Table 1. Comparing the two biometrics modalities on av-
erage, ECG provides both the longest key, reliability, and highest
1-bit entropy while iris-based generation exhibits less effective re-
sults. As shown in Table 1, we achieved 727 as the average key
length for normal ECG signals: roughly 200 bits more than pro-
duced by the iris modality. We have used freely available databases
for two biometric modalities, the PTB diagnostic database [16] and
iris database [8] to test the authentication process.

4.1 Biometric Data Randomness

4.1.1 Distributed Uniqueness Analysis
For authentication purposes, biometric keys should be as unique
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Figure 4: Inter Hamming Distance distribution of key cross the subjects for (a) normal ECG signal and for (b) iris.

(a) (b)

Figure 5: Histograms of intra Hamming Distance for (a) normal ECG signal and (b) iris.

Table 1: Reliability and Min-entropy Result based on Biometric
Key Generation.

Biometric modality Normal ECG Iris
Average 98.2 95.8
Minimal 94.7 91.1Reliability
Maximal 99.9 98.3

Average 0.9810 0.855

Minimal 0.864 0.546Entropy

Maximal 1 0.997
Average Key bits 727 538

as possible. To quantify the uniqueness of keys, we compute the
inter Hamming Distance (HD) by calculating the fractional Ham-
ming Distance between the keys obtained from different subjects.
For high uniqueness, it is desirable to have an inter Hamming Dis-
tance close to 50%, which means that half of the subjects keys are
different. It also means that there is a low correlation between keys
from different subjects, which makes predicting the keys’ behav-
ior more difficult. Figure 4 shows the distribution of inter Ham-
ming Distance of key generation from ECG and iris modalities,
respectively. The horizontal axis represents the percentage of bits
differing across the subjects, and the vertical axis represents the
number of keys compared corresponding to a Hamming Distance.
Note that, althought the nth key has been generated from subject
x it might be achieved from a different feature location of subject

y. Therefore the way of calculating inter Hamming Distance can
be different. In fact, we can arrange the keys from each subject to
reach the ideal inter Hamming Distance. Calculation of the inter
Hamming Distances can be further optimized, but for the purpose
of this work we examine a scenario with complete lack of optimiza-
tion.

4.1.2 Individual Uniqueness Analysis
To measure the individual uniqueness of keys, we calculated the

min-entropy of ECG keys for each subject. The min-entropy should
be large enough to guarantee resistance against attacks. Consider n
subjects, with each subject having k keys; k is variable. To estimate
the min-entropy, we determine the fractional Hamming Weight of
key k denoted HW(k) over all subject keys. HW(k) provides an
estimate of the probability of key k to be 1. Let pmax denote the
most likely outcome of key k as follows:

pmax = max{HW (k),1−HW (k)} (1)

Hmin =
1
m

m

∑
k=1
− log2 (pmax(k)) (2)

Where the Hmin is defined as min-entropy. The min-entropy is used
as the measure of the strength of the key. In fact, if the entropy is
close to the ideal value, which is 1,it shows that the adversary has
a small chance of guessing the correct key on the first try. Figure 6
illustrates the trace of min-entropy for the ECG and iris keys. As
can be seen, the min-entropy of the ECG signal for all subjects is
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Figure 6: Plots of illustrating the min-entropy traces for each subject for (a) normal ECG signal and for (b) iris.

close to the ideal case (i.e. 1). The iris min-entropy is smaller
than the ECG result, as shown in Figure 6. In addition, Figure 5
depicts the intra Hamming Distance for both ECG and iris data. In
this context intra Hamming Distance is defined as the uniqueness
of the bits generated for a single key for each subject; desiring a
value near 0.5. When examining reliability, one would traditionally
want an intra Hamming Distance of 0. As Figure 5 shows, the intra
Hamming Distances of the ECG signal are very close to 0.5, while
the standard deviation of the iris intra Hamming Distance is larger
than that of the ECG data. The standard deviation of the ECG intra
Hamming Distance is noticeably smaller than that of the iris.

4.1.3 NIST Test Results Analysis
As mentioned earlier, since electrocardiogram (ECG) signals are

different from person to person, it can be used as a tool for biomet-
ric recognition. However, data extracted from ECG signals needs
to have high quality randomness that results in a widely expanded
key space, making it an ideal key generator for personalized data
encryption [9]. For evaluating the randomness of ECG signals, we
can apply NIST tests to the data. The NIST Test Suite (NTS) is
a statistical package consisting of different types of tests to eval-
uate the randomness of binary sequences. Each statistical test is
employed to calculate a p-value that shows the randomness of the
given sequences based on that test. If a p-value for a test is de-
termined to be equal to 1, then the sequence appears to have per-
fect randomness. A p-value >= 0.01 (normally 1%) means that
sequence would be considered to be random with a confidence of
99% [32] [37]. Table 2 shows the results of 15 performed NIST
tests of ECG and iris data, and since all test values are greater than
0.01, this indicates that the measurements pass the requirements
for randomness. In table 2, the first column indicates the battery
of tests that are incorporated in the NIST test, the second column
displays the results of applying the ECG keys to the NIST test, the
third column shows the results pertaining to iris keys being applied
to the NIST test, and the fourth column indicates both ECG and
iris passing the NIST tests. For most of the tests the values are
very close to 1, which is the ideal case. At a first glance, the re-
sults of ECG and iris NIST tests show that either could pass the
test, but the p-values indicate that the results of the ECG test are far
more random than those of the iris. As an example the ‘Approxi-
mate Entropy’ p-value for ECG is 0.9152 while the iris p-value, for
the same test, is only 0.7047. This distinction means that using an
ECG signal for key generation is more adventageous because the
produced key has a higher chance of being more random.

Table 2: NIST Statistical Tests Suite results for the Randomness
Tests of ECG Signals and Iris Images.

NIST Tests P-value-ECG P-value-Iris Status
Frequency 0.9981 0.8523 passed
Block Frequency 0.9977 0.8237 passed
Runs 0.8339 0.7532 passed
Longest Run 0.6671 0.4127 passed
Cumulative Sums 0.9820 0.7021 passed
Rank 0.7881 0.6914 passed
FFT 0.6942 0.4967 passed
Linear Complexity 0.9336 0.7469 passed
Overlapping Template 0.9754 0.8407 passed
Non Overlapping Template 0.9316 0.6571 passed
Approximate Entropy 0.9152 0.7047 passed
Universal Statistical Test 0.6537 0.4813 passed
Random Excursions Variant 0.6239 0.5687 passed
Random Excursions 0.7892 0.6023 passed
Serial 0.8659 0.5638 passed

5. HEART TO DEVICE AUTHENTICATION
Our solution for IoT is a system called heart-to-device (H2D)

authentication. H2D is a simple access control for a smart door
lock that a person can use any fitness tracking IoT device, such
as ‘nymi’ [26], to access. To do so, first, all the subjects need to
be enrolled. The enrollment phase contains biometric feature ex-
traction, feature selection and finally the information of the helper
data; as shown in Figure 7. The helper data contains the number
of bits for each feature that can be quantized, the parameters of the
boundaries, margin and the index of the features used for a given
user. During authentication, an enrolled user supplies an ECG sig-
nal to the biometric system. The signal is preprocessed and fea-
tures are extracted. The helper data is used to select the reliable
features and quantize them to form the key. The key can be used
to authenticate the individual by comparing it to a template. In a
general case, the hardware requirements for a biometric authentica-
tion device would be the same, if not similar, to that of any standard
‘smart’ authentication device. The generated key could be stored in
some temporary memory that could then be used for encryption or
for the creation of a generated user identification certificate. This
information would then be generated using the ECG data sent to
the authenticating IoT device, which in turn would use this infor-
mation to perform access control. H2D only allows a system to
operate when the correct biometric is presented, thereby protecting
it against unauthorized access, as shown in Figure 7.
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Figure 7: Schematic for key generation procedure.

Throughout the adoptation and implementation of the IoT model
over the past few years there have been a string of recent attacks
on IoT device authentication [39, 14, 38, 42, 17, 6]; for example,
attacks on smart door locks. In addition to this work, it has been
shown that other forms of biometric authentication (e.g. fingerprint
authentication) can be easily reproduced/replicated. For these rea-
sons, this work proposes a more effective and realiable method for
implementing biometric authentication using current, standard IoT
devices.

5.1 Architecture Hypothesis: IoT Device
As mentioned before, the concepts of an Internet of Biometric

Things (IoBT) can be used in a wide variety of embedded applica-
tions that are connected to the Internet. Here, we specifically de-
scribe the architecture of an IoT device (Kwikset Kevo Smart Door
Lock) in detail to show that it is a very suitable device (embed-
ded system) to handle biometric authentication to become a more
secure and reliable system. As shown in Figure 8, a generalized
architecture of a ‘smart’ door lock consists of a microcontroller
that contains a core processor, memory as embedded storage and
input/output peripherals. The user input comes either from biomet-
ric readings (fingerprint, iris, ECG signals, etc) that are shown in
Figure 8, digit codes for use with the keypad (passwords), or some
other form of wireless communication of data (e.g. Bluetooth, Zig-
bee, WiMax). The lock mechanism is the common element of any
door lock. The wireless communication of the Kwikset door lock
can vary depending on user needs. In one variation of Kwikset’s
smart door locks, it was found that the wireless communication
module, as seen in the right half of Figure 8, used the Zigbee pro-
tocol to interact with users. Another door lock variation replaced
the Zigbee communication submodule with a Bluetooth variation.
The advantage of this modular behavior is that regardless of the
communication protocol used, a developer only has to create a new
submodule rather than an entire PCB. This submodule connects to
the larger door lock PCB through a communication channel (serial,
I2C, etc.) that allows for exchange of data between the wireless
antenna and the mixed signal microprocessor (16bit RISC). The
processor itself contains embedded flash memory. This separation
of functional components and those responsible for ‘external com-
muncation’ shows the inherent design for resilience and adaptabil-

ity as the needs and requirements of the smart door lock change
over time. The left half of Figure 8 shows a simplified diagram ex-
ample of Kwikset’s door lock architecture and is meant as an easy
to follow guide for continuing our discussion on the advantages of
IoBT implementation.

Further investigation of the device’s hardware revealed that the
Zigbee protocol was used for communicating with the smart door
lock device for an exchange of a traditional password/PIN. Sur-
prisingly, there was no acknowledgement message sent back to the
user interaction device confirming reception of the correct pass-
word/PIN. Upon realizing that no confirmation response was being
transmitted by the smart door lock, we were able to determine that
the authorized password/PIN combinations were stored locally on
the door lock using the embedded storage. By no means is this the
only implementation that can function for a door lock device; it is
equally possible to have the door lock communicate with a remote
database server for authentication or authorization needs. Through
our examination of a smart door lock’s architecture we have pro-
posed that embedded devices have the opportunity of being more
secure even in applications that are very crucial; home security de-
vices, military applications, healthcare, etc. This does not mean
that the other embedded devices are not eligible being used in IoBT
concepts. As illustrated, although a subset of IoT devices may have
been more advantageously designed for alteration, the design space
for embedded real-time devices is vast and can easily be explored to
produce a greater swath of modular IoT peripherals. We foresee a
larger user adoptation of biometric authentication across a plethora
of private and public sector implementations of IoT methodology.

5.2 Security Thoughts of ECG Biometric Re-
sults

As can be seen from Table 1, the normal ECG can generate a key
with length approximately one and a third times greater than that
of the iris reading. At these lengths, the normal ECG reading has
potential for cryptographic communications or could be used as a
‘password’ for users to unlock some encrypted certificate or pri-
vate key encrypted files. Either purpose used in conjunction with
key stretching has a larger set of potential uses. By using sim-
ple ECG reading devices (e.g. ‘fitbit’ or ‘nymi’ devices [26][15])
it could be possible to perform a key exchange authentication with
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Figure 8: Illustration of additional authentication methods to existing smart lock model (Kwikset Kevo).

any IoT device that requires authentication to access or use. To help
account for security concerns, one could have the ‘fitbit’/‘nymi’
store the biometric readings in volatile memory that gets powered
down/cleared whenever it detects being removed from the current
user. This could allow for safe exchange of the ‘biometric authen-
tication device’ between users without fear of having one user im-
personate any other user.
One could also implement a similar concept to the authentication
method proposed by Balfanz et. al. to implement ‘location-limited’
channels to exchange identifying information that can be used to
authenticate over a larger wireless network, [13] assuming that these
biometric IoT devices are seen through the lens of peer-to-peer ad-
hoc interactions. However, further investigation of that implemen-
tation is seen as out of scope for this paper. Extensive research,
work and effort has been placed in creating more secure varia-
tions of common ‘secure communication protocols’. Biometrics
can eventually reach that same level of interest but they must first be
shown to be reliable and random enough before the same amount
of time and effort can be spent. It is our belief that the results
show that biometric authentication would make an ideal case for
extended research and general implementation for this variety of
IoT technology.

6. DISCUSSION
Whenever one begins to research the field of biometric authen-

tication there are a plethora of concerns and conditions that needs
to be examined, evaluated and validated. As always, there are con-
cerns about the security of information gathered. Biometrics are
a known to be a tricky method for authentication because should
the personal ‘key’ be leaked (and/or reproducible by others) than
it is very difficult, or even impossible, to change one’s biological
make-up (e.g. iris, heart, fingerprints). It would be possible to re-
purpose a ‘fitbit’ or ‘nymi’ device for reading and transmitting the
ECG signal reading. Our proposed method for biometric authen-
tication is assumed to be no less secure than the ID card model

and does not introduce more complexity to the issues already seen
with fitness tracking IoT devices [40]. In the case of having one’s
ID card stolen it would be possible to lift the personal identifiable
information (PII) from the ID, where when using our Internet of
Biometric Things (IoBT) authentication methodology if the fitness
tracking device is stolen or lost, there is minimal possibility that
information can be exfiltrated from the device. In this manner it
would not require that the device store any of the biometric data,
but that it simply act as a ‘stupid transport layer’ which would only
transmit the ECG readings to whatever device requires the biomet-
ric authentication. The advantage of this methodology is that a user
can pass the device to other people/users and each person has their
own ECG readings. In this way it would not be possible to im-
personate another human since the device would only transmit the
current wearer’s ECG signal. This would be an improvement on
the current ID card model where each user has their own identifica-
tion card and can not exchange that card with another user without
effectively ‘losing’ their identity. While there is the concern that
a malicious user may be able to cause the ‘fitbit’/‘nymi’ device
to erroneously transmit biometric information, this is no different
than the current attack scenarios that an identification card may also
posses and as such is seen outside the scope of this paper.
The cost of such a system implementation is always a concern.
Should the cost of operating such a system outweigh the benefits of
implementation, the adoptability will suffer. In addition, issues of
leaked data and other possible complications can lead to zero com-
munity interest in the proposed biometric authentication scheme.
Even the IoT device purposed for exchanging ECG data for key
generation must be safe and secure for use. From a white paper re-
leased by Nymi Inc. [19], one can see that this IoT device places the
utmost importance on protecting the passed ECG information from
an active user. The cost for using an IoT device includes power
used for operation, how often validation/authentication needs to oc-
cur, and even what should occur if a generated key is stolen. The
benefit of using a device such as the ‘nymi’ is that the construction



of the IoT already accounts for the majority of operational cost con-
cerns. In the scenario that a key is stolen, a user would only have to
wait until a new feature extraction method is implemented by the
proposed biometric authentication scheme. Due to the manner by
which keys are generated from user ECG data, if the method for
feature extraction is altered, each user’s generated key will change
but will still be deterministic based on the original ECG signal pro-
vided by a given user. In that respect, there is the concern that
an attacker who is able to successfully double the size of enrolled
individuals may be able to alter the generated keys in a malicious
manner, but the change in how features are extracted from raw ECG
data would once again cause a shift in the generated keys, requiring
an attacker to obtain a reproducible ECG signal from each user to
impersonate them.
An added advantage to using this system is seen in the scenario:
what to do if biometrics have changed? (e.g. heart murmur). From
a security perspective, the first concern is whether or not the pro-
tected system (e.g. what requires authentication for access) still
should be accessible if a failure occurs in the biometric authenti-
cation mechanism. One could implement a “regular” password as
“backup” should a form of failure occur in the biometric authenti-
cation system. This could potentially leave a vector of attack for a
malicious user, but no more than any other current authentication
mechanism. On a more positive note, should there be an issue with
biometric authentication (originating from the user and not the im-
plementation of security) then this could be a sign that something
is biologically wrong with the given user. Thus, the ECG read-
ing device can double as heart monitoring for users. The line of
thinking for the user could be “If the door does not open, then per-
haps the user needs to see a doctor”. In a more beneficial system it
would be possible to “cloud link” problematic readings to the near-
est doctor/hospital so that medical professionals can identify these
problematic conditions before they become more harmful. Lastly,
it would also be possible to automate a watchdog process to mon-
itor the ECG readings for unexpected/harmful readings that then
could send those specfic “windows of data” to medical profession-
als allowing for a cut down on time spent looking at the larger mass
of ECG data.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the Internet of Biometric Things

(IoBT) that can act as an interface between humans and devices for
authentication purposes. Through thorough comparision of biomet-
rics (e.g. ECG and iris), we have analyzed these reading based on
their key generation properties (reliability, key length, min-entropy,
uniqueness) in order to determine the most promising candidate
for biometric authentication using IoT devices. Based on our ob-
servation, among all biometric sources, Electrocardiogram (ECG)
has the most advantages in comparison to other sources in terms
of security, convenience and even implementation. Furthermore,
NIST test results comparison between the electrocardiogram and
iris readings demonstrate the randomness of the ECG generated
key data as being the more desirable of the two. We also exam-
ined the architecture of an IoT device (Kwikset Kevo door lock)
and discussed on how to add the biometric features to the IoT de-
vice’s architecture, with emphasis on the ease by which existing
IoT devices could adopt new features, properties, or implementa-
tions. The purpose of this investigation was to prove that embedded
real-time systems (IoT devices) are more than capable of integrat-
ing ECG-based biometric authentication.

In the future, we seek to implement the use of ECG signals as
a strong biometric method to both secure IoT devices and to later
unlock them. Future work includes: development and design of

new submodules for different communication protocols and meth-
ods (e.g. wireless vs. wired), thorough examination of overhead
costs from both a hardware and software standpoint, implementa-
tion of the biometric authentication within the architecture of an
exsiting door lock, and distributed implementation of a biometric
authentication service for the purpose of evaluating the effective-
ness at scale of using ECG-based biometric authentication. Our
hope is to see a more secure, reliable, and convenient implemen-
tation of biometric authentication become widely adopted as the
‘Internet of Things’ continues to grow and evolve.
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