
2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

Cross-VM Cache Attacks on AES
Berk Gulmezoglu, Mehmet Sinan İnci, Gorka Irazoqui, Thomas Eisenbarth and Berk Sunar

Abstract—Cache based attacks can overcome software-
level isolation techniques to recover cryptographic keys
across VM-boundaries. Therefore, cache attacks are be-
lieved to pose a serious threat to public clouds. In this
work, we investigate the effectiveness of cache attacks in
such scenarios. Specifically, we apply the Flush+Reload
and Prime+Probe methods to mount cache side-channel
attacks on a popular OpenSSL implementation of AES.
The attacks work across cores in the cross-VM setting
and succeeds to recover the full encryption keys in a short
time—suggesting a practical threat to real-life systems.
Our results show that there is strong information leakage
through cache in virtualized systems and the software
implementations of AES must be approached with caution.
Indeed, for the first time we demonstrate the effectiveness
of the attack across co-located instances on the Amazon
EC2 cloud. We argue that for secure usage of world’s most
commonly used block cipher such as AES, one should
rely on secure, constant-time hardware implementations
offered by CPU vendors.

Index Terms—Cross-VM Side-Channel Attacks,
Cache Attacks, Memory De-duplication, Prime+Probe,
Flush&Reload.

I. INTRODUCTION

In recent years, cloud and virtualization adoption by
both government and private sector has reached unprece-
dented levels. From game servers to mobile application
databases, more and more of the previously privately
owned and managed systems are moving to cloud. To
take advantage of this opportunity major tech companies
such as Amazon, Google and Microsoft have become
Cloud Service Providers (CSP) while Netflix, Dropbox,
Instagram, Pinterest have became some of their biggest
customers. However, the full potential of the cloud is still
not realized. The biggest concern preventing companies
and individuals from further adopting the cloud is data
security and personal privacy.

In virtualized systems, multiple users share the under-
lying hardware for better utilization and lower cost. On
the other hand, these users do not necessarily know or
trust each other and require strong isolation. Sandboxing
is enforced by the hypervisor to realize this in a secure
and efficient way. However, sandboxing has traditionally
been defined in the software space, thus, ignoring leak-

ages of information through subtle side-channels shared
by the processes running on the same physical hardware.
This is partly due to the fact that, traditionally software
libraries and applications designed for servers were
implemented assuming trusted servers and/or neighbor
VMs. For privacy critical data, especially cryptographic
data, this gives rise to a blind spot where isolation
can break. Even though classical implementation attacks
targeting cryptosystems have been studied extensively,
so far, there has been little discussion about safe im-
plementation of cryptosystems on cloud systems where
multiple tenants run on the same CPU. Indeed, given
the level of access to the server and control of process
execution required to realize a successful physical attack,
these attacks have been largely dismissed in the cloud
setting until fairly recently.

It was in 2009 when it was first demonstrated that it is
possible to solve the logistics problems and extract sen-
sitive data across VMs. Specifically, using the Amazon
EC2 service as a case study, it was demonstrated that it
is possible to identify where a particular target VM is
likely to reside, and then instantiated new VMs until one
becomes co-resident with the target VM. By solving the
co-location problem, this initial result finally established
a viable and realistic scenario where microarchitectural
side channel attacks can be employed to steal secrets.

Later on, new and more powerful covert channels
were exploited in virtualized environments. In fact,
microarchitectural attacks have shown to be able to
recover a wide variety of private information, e.g., from
cryptographic keys to sensitive information from a co-
located user’s shopping cart. In general, the source of
these vulnerabilities is that people are running soft-
ware and code that was designed for single user ma-
chines/privately owned servers instead on shared cloud
systems. However, as explained above, when sharing
physical resources, one has to be wary of his neighbors
and consider them as potentially malicious parties.

Our Contribution: In this work, we present a novel
cache based attack on the AES cipher. In contrast to pre-
vious works [1], [2] we use the LLC as a covert channel,
which is shared across cores in modern processors. This
allows us to recover an AES key even when the victim

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

2

and spy are not co-residing in the same core.
We utilize two novel side channel techniques, i.e.,

Flush+Reload and Prime+Probe applied in the LLC.
Whereas the first one requires memory de-duplication
features to be activated at the hypervisor level, the
latter does not need special requirements to succeed.
We demonstrate the viability of the attack by running
in different processors and hypervisors, e.g., VMware
for Flush+Reload (since they both implement de-
duplication) and VMware and Xen for Prime+Probe
(without de-duplication). Finally we demonstrate the
viability of the Prime+Probe attack in the real cloud
by running it on Amazon’s EC2 servers.

In short, this paper:
– Introduces two spy processes that use the LLC as a

covert channel;
– Discusses the differences and applicability of spy

processes in both native and cross-VM scenarios;
– Presents a new key recovery method for a T-table

based AES algorithm and the first cross-VM LLC
attack on AES recovering the full key;

– Introduces the first attack on AES in a public
cloud, i.e., the Amazon EC2 cloud; and

– Presents a thorough comparison of the effective-
ness and applicability of the Flush+Reload and
Prime+Probe attacks and techniques based on dis-
tinguishers in both the native and cross-VM scenar-
ios including Amazon’s EC2.

The rest of the paper is organized as follows: first
we present the background to understand the attacks in
Section II, then we explain our attack and measurement
procedure in Sections III and IV, then we present our
results in the different scenarios in Section V and finally
we point out the conclusions in Section VII.

II. BACKGROUND

In this section we give a brief overview of the related
work in terms of cache attacks and we explain the neces-
sary background to understand the attacks we performed.

A. Related Work

In recent years, cache attacks have become more
practical and popular due to the widespread adoption of
virtualized systems and cloud computing. Cache attacks
were first considered as a possible covert channel as early
as 1992 by Hu [3]. Even though the work served as an
initial theoretical study on cache attacks, it was not until
2000 when Kelsey et al. [4] expanded it by distinguishing
cache hit/miss ratios. Shortly later, theoretical models
of cache attacks were investigated by Page [5] whereas

Tsunoo et al. [6] proposed the first cache based attacks
against DES.

The first practical implementations of cache attacks on
AES were proposed in 2004. Bernstein [7] recovered a
full AES key by implementing a timing attack based on
micro-architectural timing differences when the memory
blocks are loaded in different positions of the cache.
Around the same time, Osvik et al. [2] studied the
viability of two novel cache based spy processes, i.e.,
evict + time and Prime+Probe. The first one works by
observing the difference between two equal encryptions
when a memory block in the cache is evicted in between
the encryptions. If the memory block is used by the
encryption algorithm, it will take less time to complete
the second encryption since the used data will be already
loaded to the cache. The latter technique fills the cache
with attacker’s own data before the encryption, and
checks after the encryption which memory blocks still
remain in the cache, i.e., which memory blocks have not
been used by the algorithm. While both methods achieve
full key recovery, Prime+Probe requires less traces.

In the next couple of years, variants of the above
mentioned spy processes were studied against different
cryptographic algorithms. Bonneau and Mironov ex-
ploited a variant of Bernstein’s attack, but targeting cache
collisions in the last round of AES [8]. Later, Acıiçmez
et al. showed that collisions in the first and the second
AES rounds could also be exploited to retrieve an AES
key [9]. Improvements over [1] were also studied by
Neve and Seifert, applying a similar spy process to the
last round of AES. Later, Acıiçmez demonstrated that
cache spy processes are also effective against public key
cryptographic algorithms like RSA [10].

Despite the progress that was achieved in terms of
side channel attacks, they were still believed to have
low practicality due to the difficulty of the scenario (two
processes running under the same Operating System)
in which they were applied. However by 2009 cloud
computation and virtualized environments were popular
enough to start considering the implications of cache
side channel attacks across co-located Virtual Machines
(VMs). In fact, Ristenpart et al. [11] were able to
detect co-located VMs in the Amazon EC2 public cloud,
and deduce key strokes from the co-located victim by
monitoring the cache.

In the following years, researchers kept on exploring
the scenario presented in [11]. Indeed, only one year
later Zhang et al. [12] presented a new method to
detect whether any tenant is co-located in virtualized
environments. The method was based on monitoring and

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

3

detecting whether anyone else was using the upper level
caches. Shortly later, again Zhang et al. [13] recovered
the ElGamal decryption key using the above explained
Prime+Probe attack from a core co-located VM. Around
the same time, a new cache attack that would later
acquire the name of Flush+Reload was proposed by
Gullasch et al. [14]. With the new spy process, authors
were able to recover an AES key in native OS scenario
by controlling the Completely Fair Scheduler (CFS).

The previously proposed attacks succeeded in scenar-
ios where victim and attacker are co-located in the same
CPU core and share L1 and L2 caches. However, with
multicore computers and servers becoming more popular,
the difficulty of achieving this co-residency increased.
Yarom et al. [15] were the first ones overcoming this
issue, by using a covert channel that is shared by all
the cores, i.e., the Last Level Cache (LLC). Using the
Flush+Reload spy process, they were able to recover a
full RSA key across VMs residing in different cores,
thereby increasing the practicality (and popularity) of
cache based side channel attacks. Shortly later, Irazoqui
et al. [16] used the same method to mount a new cache
attack by monitoring last round of an AES encryption.
Both attacks demonstrated that the sandboxing tech-
niques implemented by various hypervisors (e.g., Xen,
KVM and VMware) could in fact be bypassed.

The Flush+Reload attack was also applied in many
other attack scenarios. Namely, Platform as a Ser-
vice clouds in [17], security protocols and improper
patches [18], Eliptic Curve Cryptography (ECC) [19] and
building effective cache template attacks [20]. However,
one of the main disadvantages of the Flush+Reload
spy process is that it requires de-duplication features
to be enabled by the hypervisor. Although this might
be popular in lab based environments, de-duplication is
usually not enabled in commercial IaaS clouds. However,
Liu et al. and Irazoqui et al. demonstrated in concurrent
works that LLC attacks were also possible without de-
duplication by recovering ElGamal and AES keys across
VMs respectively in [21], [22]. They implemented the
well known Prime+Probe attack in the LLC, overcoming
difficulties such as sliced caches and virtual to physical
address mappings. These works were later expanded
by Oren et al. [23], implementing the Prime+Probe
in javascript to infer the websites visited by potential
victims. Recently, Inci et al. [24] implemented the first
key recovery attack in the Amazon EC2 public cloud
across co-located VMs.

B. Cache addressing and virtual-physical memory map-
ping

Modern processors use virtual memory to protect
processes from accessing directly the physical memory.
The OS takes care of translating these virtual addresses
to their physical mapping. The physical memory in most
modern systems is divided into memory pages of 4KB
size. The page size plays a crucial role in the translation
stage, since the number of bits from the virtual address
that have to be translated directly depends on it. Indeed,
if po is the page size in bytes, the lower log2(po) bits of
the virtual address will not be translated by the Memory
Management Unit (MMU) and will remain the same in
both the physical and virtual addresses. This is what we
call the page offset. The rest of the bits will be refereed
as the virtual page frame number before the translation
and the page frame number after the translation.

In order to efficiently perform this translation, modern
processors have several levels of Translation Lookaside
Buffers (TLBs). The TLB is a special cache holding the
most recently fetched memory pages and their corre-
sponding virtual page frame numbers. This allows the
system to first check the TLB for the requested page
translation, speeding up the page lookups.

Aimed at more efficient paging, most processors also
allow hugepage allocations. Hugepages are substantially
larger than regular pages and usually have a separate
TLB. As a result of this, a hugepage holds 2 MB of
data while occupying a single TLB entry in contrast to
512 entries would be needed with regular pages which
in turn reduces the number of TLB misses.

Memory Addressing in Cache: There are three
widely used cache types: direct mapped (each memory
block can only go to one fixed location in the cache),
fully associative (a memory block can reside in any
position in the cache) and set associative (a memory
block can reside in a subset of locations in the cache).
We will mainly focus on set associative caches since they
are the most common choice in modern processors. Set
associative caches are defined by 3 main parameters: the
cache size s, the cache line length l and the number of
ways w for each cache set. Using these parameters, one
can calculate the number of sets in the cache as:
ns = s/(w ∗ l)
As Figure 1 shows, each of the memory blocks (l

size blocks) will reside in a specific set in the cache,
mainly defined by its physical address. For the address
translation, the physical address (pfn+po) is divided into
three different categories. The lowest log2(l) bits points

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

4

Physical Page

Virtual Page Offset CACHE

MMU

Offset

Cache tag Set Byte

. . . .

. . . .

. . . .

S0

S1

SN

tag

tag

tag

B0

B0

B0

Bn

Bn

Bn

.

.

.

.

.

.
.

.

.

Fig. 1. Cache accesses when it is physically addressed.

to a specific location in a cache line. The following
log2(ns) bits indicates the set in which the data resides.
The rest of the bits acts as tag that is used for correct
matching of the corresponding memory block.

C. Memory De-duplication

Memory de-duplication is an optimization technique
developed to increase memory utilization and efficiency
of virtualized systems. While the de-duplication was
originally designed for hypervisors, it was later inte-
grated to non-virtualized systems as well. De-duplication
works by scanning system memory for duplicate entries,
commonly found in virtualized systems and merge these
entries to save memory. After the detection of duplicate
entries, multiple copies are cleared from memory and a
single copy is shared between users.

While the mechanism is useful in OS memory man-
agement for merging shared libraries used by different
applications, it is even more beneficial in virtualized
systems where many VMs run the same OS and/or
software. In fact, in [25], researchers were able to run
52 Windows XP guest VMs with 1 GB of RAM each,
on a system with only 16 GBs of physical RAM.

Note that while the specific implementations of de-
duplication may differ on parameters such as scan in-
terval, block size and area, the end result is the same.
As an example, we will detail the Kernel Samepage
Merging (KSM) used by the Kernel-based Virtual Ma-
chine’s (KVM) [26], [25]. It is introduced to the Linux
kernel in version 2.6.32 [27] and indirectly in KVM
hypervisor. KSM works by madvise system call advising
the ksmd to scan an unshared portion of the memory.
Since it would be CPU intensive and time consuming
to scan the whole memory, only potential candidates
are scanned. During the scan, signatures are created for
these pages and added to the de-duplication table. To
create signatures, the KSM scans the memory at 20
msec intervals and scans only a portion of the potentially
duplicate memory pages at a time. This is the reason

OpenSSL

Apache

Firefox

Apache

OpenSSL

OpenSSL

Apache

Firefox

Fig. 2. Memory De-duplication Scheme

why memory disclosure attacks like [28] has to wait
for a certain time before the de-duplication takes effect
and only then the attack can be performed. During
the memory search, the KSM analyzes three types of
memory pages [29];

– Volatile Pages: Pages where the contents of the
memory change frequently and should not be con-
sidered as a candidate for memory sharing.

– Unshared Pages: Candidate pages that the madvise
system call advises to the ksmd to be likely candi-
dates for merging.

– Shared Pages: De-duplicated pages that are shared
between users or processes.

When pages with matching signatures are found, they
are cross-checked to determine if they are identical. If
they match, the pages are merged and tagged as copy-on-
write (COW). When a process wants to make a change in
the de-duplicated page, a copy of the page is created and
the changes are applied to this copy, hence terminating
the de-duplication.

D. The Flush+Reload Side-Channel Attack

The Flush+Reload attack is a trace driven cache side-
channel attack first introduced in [14] and acquired its
name in [15]. The attack exploits the shared memory
leakage on de-duplication processes. One of the advan-
tages of Flush+Reload attack is that the attacker does not
need to share core with the victim as long as a shared
last level cache exists. There are three main stages to
implement the attack:

– Flush stage: The first step of the attack involves
flushing the desired memory locations from the

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

5

entire cache hierarchy using the clflush com-
mand. Due to the inclusiveness of the LLC in Intel
processors, the clflush command will remove
the memory block from all cache levels.

– Victim access stage: In this stage, the attacker waits
for the victim to execute the targeted process.

– Reloading stage: The attacker measures the reload
time of the previously flushed memory block. If the
victim accessed the memory block, it will reside in
the cache therefore resulting in a lower reload time.
If not, then the targeted memory block resides in the
memory, thus resulting in a higher reload time.

E. The Prime+Probe Side-Channel Attack

The Prime+Probe attack is a cache based spy process
first described 10 years ago by Osvik et al. [2]. The
attack procedure consists of three main stages:

– Cache priming : In the priming stage, the attacker
fills the whole cache with his own memory blocks.

– Waiting for victims accesses : In the second step,
the attacker waits enough time to let the victim use
the previously primed cache. Obviously, some of
the primed memory blocks will be evicted by the
victim at this step.

– Probing the primed blocks : In this stage, the at-
tacker loads the previously primed memory blocks.
Some of the blocks (the ones that the victim did not
evict) will still reside in the cache, while the other
ones will have been evicted to a lower level cache
or the memory. This can be noticeable by measuring
the loading time for each of the blocks, since lower
level cache accesses will be retrieved slower.

In Prime+Probe attack, we need to know which set
is used by T-table entries. If the machine has non-linear
selection algorithm (which is the challenging part of the
attack), then we can find the T-table positions in the
LLC through Algorithm 1. After we get the location
(which set and slice in the LLC) of the T-tables in the
LLC, we need to fill that set of the LLC with our data.
After a while if the victim uses this specific T-table,
the loading time is higher. The loading means reading
all our data and measure the timing the reading of 20
(set-associativity) lines. If there is an access to T-table,
the loading time is higher and we can conclude that the
T-table is used in that specific encryption.

Although Prime+Probe has been known for many
years, it was not until one year ago when it was applied
to the LLC. Some of the reasons why it was not trivial
to modify the Prime+Probe attack to the LLC are:

Fig. 3. Regular Page (4 KB, top) and Hugepage (2MB , bottom)
virtual to physical address mapping for an Intel x86 processor. For
Hugepages the all L3 cache sets are transparently accessible even
with virtual addressing.

– Large cache: The LLC is usually in the order of
MBs making it impractical to prime the whole set.

– Unknown physical bits: Due to larger size of the
LLC, the location of the memory blocks in the LLC
is unknown. With small caches (like the L1 cache),
the page offset provides enough information to infer
the location in the cache, as demonstrated in [2].
However, more sets the cache has, the more bits
from the pfn are needed to specify a location.

– LLC slices: In order handle several concurrent
LLC accesses, Intel processors usually divide their
LLC in slices, with an unpublished slice selection
algorithm distributing the memory blocks among
them. This means that even if we can calculate the
cache set of our data, we still need to locate it in
one of the slices.

Indeed all of these complications can be handled
to mount a LLC Prime+Probe attack, as demonstrated
in [21], [22]. The first issue can be solved by monitoring
only the target sets where the targeted memory block
location is known. The second issue can be solved by
using hugepages as described in II-B. Hugepages are
usually in the order of MBs, making the po larger than
the usual 12 bits that is obtained with regular pages.
With 2MB pages, 21 bits of the page offset is visible
and sufficiently large to target modern LLCs. The final
problem can be solved if the slice selection algorithm
is known or by creating a large pool of memory blocks
and detecting which memory blocks collide in the same
slice, as demonstrated in [30], [31], [32].

For CPUs with non-linear slice selection algorithms,
it is harder to recover the T-table location in cache. For
instance, with a 10 core machine with 20 MBs of cache,
even if we know the last 6 bits of the set number of the

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

6

T-table there are still 5 unknown bits. In addition, the T-
table can be located in non-linearly or linearly addressed
slices of the cache. Hence, there are total 25×10 possible
set-slice pairs for T-table location. To find the correct set-
slice pair, all 320 possibilities must be profiled before an
actual Prime+Probe side channel attack.

III. THE AES ATTACK

We study two different side-channel attacks known as
Flush+Reload and Prime+Probe to monitor accesses to
memory blocks. Both techniques can be implemented
in the cross-VM setting, but while the Flush+Reload
technique requires de-duplication features to be enabled
by the hypervisor, Prime+Probe does not require specific
characteristics to succeed. This de-duplication process
is only applied if data is marked as shared (as is the
common case for all crypto libraries).

A. A single cache line attack on AES

In this section we explain how the AES encryp-
tion is implemented in the T-table C reference im-
plementation of OpenSSL 1.0.1g library and how
the leakage is exploited. AES usually performs 4 op-
erations per round, i.e., SubBytes, ShiftRows,
MixColumns and AddRoundKey. T-table imple-
mentations usually mix the SubBytes, ShiftRows
and MixColumns operations in a single T-table look-
up operation and a XOR operation. Thus, T-table AES
implementations are only based on Table look-up and
XOR operations. Since the last round does not perform
the MixColumns operation, the last round key byte is
directly related with the cyphertext byte and the T-table
access through a simple XOR addition:

Ci = Tj [Si]⊕K10
i (1)

where Tj is the corresponding T-table applied to the
ith byte and K10

i (ith byte of the last round key). In
this work, we exploit the fact that if both the ciphertext
and the accessed T-table position are known by the
attacker, a simple XOR will output the key byte that
was used in the last round. More details on the T-table
AES implementation can be found in [22].
OpenSSL 1.0.1g utilizes four 1KB size T-tables.

Due to the facilities that the last round gives us, we focus
our attack in the last round of AES. Recall that this
is not an issue, since the key scheduling is invertible.
Therefore, our goal is to determine the accessed T-
table lines used in the last round of an AES encryption.
In addition to the accessed table positions, we also
assume that the attacker has access to the corresponding

ciphertext c. Therefore, it is assumed that the attacker
has several tuples 〈c, t〉.

These accessed T-table positions will be known with
the help of two spy processes: Flush+Reload and
Prime+Probe. However, a cache line will contain more
than one table positions, meaning that we cant recognize
an access to a single table position but rather to a entire
memory block. With 64 byte memory lines, each T-table
occupies 16 cache lines and each cache line holds 16
T-table positions for OpenSSL 1.0.1g. Furthermore
the sets that each of these lines occupy in the cache
increase sequentially, i.e, if T [0 − 15] occupies set 0,
then T [16−31] occupies set 1..etc. Since each encryption
makes 40 accesses to each of the T-tables, the probability
of not accessing one of the T-tables memory lines is:

Prob[no accessT [i]] = (1− (n/256))l (2)

For AES-128 in OpenSSL 1.0.1g, n = 16 and
l = 40 per Tj , therefore 100% − ε0 of reloads are
expected to come from the cache in H0, and only
92%+ε1 for H1, where εi are noise terms. Hence, a side-
channel containing information about memory/cache ac-
cesses will feature differing leakage distributions f0 and
f1 for cases H0 and H1, respectively. Flush+Reload and
Prime+Probe techniques distinguish these distributions.

B. Flush+Reload and Prime+Probe applied to AES

In order to recover the AES key, we apply the two
spy processes presented in section II. They both have
similarities and differences that we will discuss below:

– Flush+Reload: The first step of the attack is flush-
ing two targeted memory blocks related to the
4 T-tables before the encryption starts to ensure
that they are located in the memory. Then, the
attacker waits until the encryption is completed
and checks whether targeted memory blocks (i.e. a
position in the T-table) have been used or not. The
Flush+Reload side channel attacks offered a high
distinguishable covert channel due to significantly
different distributions, as it can be seen in Figure 4.
On the other hand, the measurements include noise
from various sources. One of which is measurement
inaccuracy stemming from micro architecture, by
the OS and the hypervisor. In general, this noise
causes a moderate increase in the number of cycles.
However, if e.g. a context switch happens during a
measurement, the value might be off several orders
of magnitude. In order to remove this noise, a
threshold can be applied to filter out the outliers.

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

7

Clock Cycle
0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

s

0

0.1

0.2

0.3

0.4 95%

5%

(a) Distribution f0 for case H0

Clock Cycle
0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

s

0

0.1

0.2

0.3

0.4 88%

12%

(b) Distribution f1 for case H1

Fig. 4. Leakage Distributions f0 and f1 if Hypotheses H0 and H1 are correct. The measurements were taken in an Intel i5 2430M CPU
with the Flush+Reload attack [37].

Having said that, even with a reasonable threshold,
the noise is definitely not Gaussian, possibly better
described as Ex-Gaussian. The second source of
noise is the cache misses due to cache line evic-
tions by another process and is independent of the
measurement process.

– Prime+Probe: The Prime+Probe attack can be sim-
ilarly applied to obtain the AES key. However, since
we no longer share the T-table memory blocks with
the victim, we first have to determine which set in
the LLC the T-tables go into. If all T-tables reside
in one memory page, it is sufficient to know the
location of one since the rest will go to the adjacent
sets. In order to trigger this information, we feed the
encryption server with random plaintexts. Since we
know that the probability of not using a specific
memory block is 8% and with sufficient number of
encryption we should see that distribution in the
correct set. Once the correct sets are found, we
just need to prime before the encryption to make
sure that the monitored memory block will reside
in the memory. After the encryption, we probe our
memory lines to check if the set was used. The dis-
tribution of an accessed T-table position measured
with Prime+Probe can be seen in Figure 5.
Although the noise sources are very similar in
both attacks, Prime+Probeis more easily affected
by them. In fact, with Flush+Reload a noisy process
needs to create w memory lines pointing to the set
where our monitored memory block resides to cre-
ate an undesired eviction, being w the associativity.
However, with the Prime+Probe technique, a single
memory block pointing to the monitored set by a
noisy process will already create an eviction of our
primed memory blocks.

C. Searching AES T-table Locations

AES implementation of OpenSSL 1.0.1g uses
static T-table entries i.e. all T-tables are always in the
same position in the LLC for every encryption after
compiling the library. Therefore, we need to find the
T-table locations in the LLC to perform the attack.

In the Intel Xeon E5-2670 v2 processors, the LLC has
10 slices and each slice has 2048 sets in total. Also, a
non-linear slice selection algorithm is implemented and
reverse engineered in [24]. The lower 12 bits of the
physical addresses of T-tables are known by the attacker
which helps to decrease the possible locations for T-
tables in the LLC. Therefore, we need to profile every set
that solves s mod 64 = o, where s is the set number and
o is the offset for a T-table address. The total number of
possibilities per T-table is 320 since there are 32 possible
set numbers and 10 different slices. The way to detect
the correct set-slice pair is to monitor all 320 candidates.

If the machine has 2n cores it has linear selection
algorithm where it is easier to find the T-table positions
in the LLC because we only have to create n eviction
sets (the lower 16 bits do not play a role in the slice
selection). Thus, one can accordingly change the lower
16 bits to select the set he wants to target, since the
slice will not be affected). However, if the non-linear
slice selection algorithm is implemented in the machine,
the lower 16 bits of the address are taken into account
(non-linearly) to select the slice. Therefore, we need to
implement the Algorithm-1 to create 320 eviction sets
easily to increase the speed of the attack (rather than
creating all eviction sets one by one).

Therefore we propose an algorithm 1 to find all the
lines for every set-slice pair. By using this algorithm, we
first discover which lines belong to which linear slice in
the LLC, then create all 320 eviction sets automatically.
This algorithm can also be used to profile the whole LLC

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

8

in the cloud as long as a processor with similar cache
architecture is present.

Algorithm 1 T-table Searching Algorithm
Input: Set number (S), Linear slice (Sx)
Assume working with the linear slices
for i from 0 to 255 do

if Linei belongs to Sx then
if nl(Linei)==0 then

Add Linei to List(Ll)
else

Add Linei to nonlinear list(Lnl)
end if

end if
end for

D. Selecting the Outliers Cutoff Threshold

In the experiments, we have used different thresholds
for outliers i.e. cutoff points where we treat any data
surpassing it as noise. In cross-VM attack scenario,
since the attacker has legitimate access to the same
physical machine as the victim, he can simply run the
encryption himself, obtaining the necessary execution
and memory/cache access times. Therefore the cutoff
threshold selection can be done in real world scenarios.

IV. DISTINGUISHERS FOR THE AES ATTACK

To analyze the side-channel data, we describe and
compare three different distinguishers. The aim is to pro-
cess one byte of the ciphertext c with the corresponding
T-table entry and the access time t to recover the one
byte k of the last round key.

As mentioned earlier, we have two different sets of
hypothesis to observe the leakage. If the hypothesis is
correct, the distributions f0 and f1 for two sets differ and
hence they become distinguishable with sufficient num-
ber of samples. In contrast if the hypothesis is wrong,
both distributions have the data from the mixed distri-
bution and this makes them indistinguishable. There-
fore, we apply different distinguishers to decide whether
samples for hypotheses H0 and H1 are actually from
different distributions.

In the field of side-channel attacks, the most com-
monly used distinguisher is the difference of means
of two distributions [33], [34]. As for the zero-value
DPA [35], our hypothesis deviates from a single-bit
prediction, yet the test still distinguishes two cases.
Similarly the variance test uses a statistical moment to
distinguish the two distributions [36], [34], [33]. The last

distinguisher applies a miss counter, as used in [16]. The
list is neither exhaustive nor do we make an optimality
claim.

Miss-counter based Distinguisher: This distinguisher
counts and compares the memory misses for the two
cases H0 and H1. Ideally, there should be no misses
for H0, as the memory block must have been accessed
by the AES execution. To establish a miss counter,
reload timings are converted to hits (0) or misses (1)
with respect to the threshold value. Since H1 contains
significantly more values than H0, we compare the
relative counters instead of absolute ones. Finally, our
distinguisher becomes:

Dmiss ctr = argmax
k̂

(
ctrH1

− ctrH0

)
Difference of Means Distinguisher: The difference

of means distinguisher approximates the means of two
distributions and outputs their difference in cycles.

Dmeans = argmax
k̂

(τH1
− τH0

)

Since H0 should feature more cache accesses than
H1, τH0

is expected to be smaller, i.e. the largest
positive difference corresponds to the most likely key
hypothesis. Welch’s t-test distinguisher (which divides
the means with their respective variance) can be equally
well applied to guess the correct key. Indeed, Welch’s
t-test is commonly applied to check two hypothesis
where two gaussian distributions have different means
and variances. In this work, we studied Welch’s t-test
and did not obtain an improvement over the difference
of means distinguisher. Thus, we use the difference of
means distinguisher due to its simplicity.

Variance based Distinguisher: This distinguisher out-
puts the difference of variances in cycles.

Dvars = argmax
k̂

(var(τH1
)− var(τH0

))

Note that again the variance of H0 should be smaller
than that of H1. However, outliers can badly affect this
distinguisher. In cache attacks, significant outliers can be
orders of magnitude larger than the regular data and need
to be filtered. Since Hi is key dependent, the guessed
key k̂ that maximizes the difference is most likely key
candidate. Note that the sign carries information in all
three tests. In fact, the case H0 and its leakage f0
correspond to fewer cache misses hence lower miss
counter, lower average (mean) access time and lower
variance. Our results confirm that taking the sign into

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

9

Clock Cycle
60 80 100 120 140 160 180 200 220 240

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

s ×10-4

0

2

4

6

8

100%

(a) Distribution f0 for case H0

Clock Cycle
100 150 200 250

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

s ×10-3

0

0.5

1
6% 94%

(b) Distribution f1 for case H1

Fig. 5. Leakage Distributions f0 and f1 if Hypotheses H0 and H1 are correct. The measurements were taken on a 10 core Intel Xeon
E5-2670-v2 CPU with the Prime+Probe attack.

account derives a better distinguisher. Details of the
distinguishers used in the attack can be found in [37].

When we compare three distinguishers, we observe
that the miss counter is the most useful for this study.
It is quite intuitive, as cache misses and hits are what
we are looking for. Furthermore, the method is only
marginally affected by outliers. The main disadvantage
of this method is the requirement of a threshold, which is
processor-dependent and requires some minimal profil-
ing. The other two methods are more affected by outliers.
All three distinguishers can easily be converted to a
correlation method. Indeed, by correlating the right term
(e.g. τH0

) to 0 for H0 (a guaranteed cache hit with low
reload time) and 1 for H1 (a possible cache miss with
higher reload time), the most likely key k̂ features the
highest correlation.

V. EXPERIMENT SETUP AND RESULTS

A. Lab Experiment Setup

We use two setups to quantify the additional noise
stemming from virtualization;
• Native Execution: In this setup, both the AES

encryption process and the attacker run on a native
Ubuntu 12.04 LTS version with no virtualization.
In this setting, we used a 2-core Intel i5-2430M
CPU clocked at 2.4 GHz. By running the attack
in this setup, we minimize the environmental noise
and achieve comparability to former non cross-VM
cache attacks.

• Cross-VM Execution: In this setup, two up-to-
date Ubuntu VMs are launched and managed by
VMware ESXI 5.5 bare-metal hypervisor. The at-
tacks are then performed in Cross-VM setting, over-
coming hypervisor isolation boundaries. The first
VM is used as the target that performs the AES
encryption while the second VM acts as the attacker

trying to recover the secret key. The experiments in
this setting were performed on a 10 core Intel Xeon
E5-2670-v2 CPU. This setup reflects a realistic
attack scenario by using a modern CPU used in
commercial clouds [38], [39]. In this setup, accesses
from the cache and the memory take around 30 and
233 cycles respectively. In the same setup, single
AES encryption operation take 659 and 257 cycles
for with and without pre-flushed T-tables.

Note that all the timing measurements in the experi-
ments are gathered using the Read Time Stamp Counter
and Processor ID (RDTSCP) instruction, which not only
reads the time stamp counter but also implementes seri-
alizing instructions to ensure that all memory operations
have finished before we start reading. The usage of the
RDTSCP instruction is allowed in VMware user mode,
but not in KVM. In this case, the Read Time Stamp
Counter (RDTSC) with a mfence instruction can be used.
Moreover, these instructions are not emulated by the
hypervisor but executed directly, unlike other serializing
instructions like the CPUID used in [16]. Also, the
flushing operation is performed using the Cache Line
Flush (CLFLUSH) instruction.

B. Flush+Reload Results

These results are obtained for two environment in both
native and virtualized environments as presented in [37].
In addition, the timing behavior is analyzed to show
the improvement on the success rate by using the three
different distinguishers mentioned in Section IV: the
miss counter, the difference of means and the difference
of variances.

Native results:
At first we present and compare the scores of the

key guesses using the three different distinguishers in
native execution in Figure 6. The difference of means

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

10

and variances distinguishers suffer more from noise due
to heavy outliers stemming from different microarchi-
tectural sources of noise. However the measurements
shown in Figure 6 were taken by cutting off outliers
with a threshold value of 5 times the memory access
time. It can be seen that for 10,000 encryptions the three
distinguishers maximize the score for the correct key,
180 in this case.

Finally the number of traces needed for the recovery
of the key are presented in Figure 7.

Cross-VM Execution Results:
In the cross-VM setting, the attack requires 30,000

encryptions to recover the full key using the miss counter
hypothesis as seen in Figure 8(a). In the same setting,
50,000 encryptions are needed when the difference of
means distinguisher is used, shown in Figure 8(b). Fi-
nally, we would like to remark that only 15 seconds are
enough to recover the whole key, which to the best of
our knowledge is the fastest working attack in a realistic
cross-VM setting without scheduler exploitation.

C. Prime+Probe Results

One of our improvements with respect to [22] is
reducing the noise and increasing the success rate. The
results are summarized as follow:

Native Results:
In order to cope with the outliers, which affect mean

and variance based distinguishers significantly, we im-
plemented an upper threshold of 500 cycles. The suc-
cess of the distinguishers can be seen in Figure 9. All
distinguishers are able to distinguish the hypotheses H0

and H1 easily.
For this attack scenario, we show that 10,000 en-

cryptions are enough to find the correct key byte us-
ing the mean distinguisher (Figure 10(a)). The mean
distinguisher works better with the Prime+Probe attack
because it is more prone to noise than the Flush+Reload
attack. Therefore we use it to calculate the number
of encryptions needed to recover the full AES key in
Figure 10(a). As pointed out earlier, the advantage of
using mean based distinguishers is that it does not require
a threshold to distinguish between cache accesses and
memory accesses.

Cross-VM Execution Results:
In order to simulate the cross-VM scenario we are re-

produce the Prime+Probe attack across co-located VMs
using VMware as our hypervisor In this setting, finding
the T-table locations in the cache becomes difficult due to
the tremendous noise. Therefore, we need more samples
and repeated experiments to find the locations of T-table

entries. After we find the T-table entries in the cache
the Prime+Probe attack is performed. Again due to the
additional layer of noise added by the hypervisor, more
encryptions traces are needed compared to the native
case. To extract the full key we need at least 40,000
ciphertext-timing tuples. After the experiment we apply
the distinguishers to find out which one works better.
The results can be seen in the Figure 11. For the cross-
VM scenario the difference of variances is not successful
due to the observed noise in the square operation. Even
if we eliminate the outliers noise causes the higher
variance change due to the overwhelmed noise in the
square operation. The miss counter and difference of
means distinguishers work similarly well. Hence, both
of them can be applied to recover the correct key in the
cross-VM scenario. However, the difference of means
distinguisher can adapt itself better than the miss counter
distinguisher. Therefore we use it in the results presented
in Figure 10(b). Note that only after 40,000 encryption
the correct key is distinguishable easily, meaning that
cross-VM attack needs 4 times as many number of
encryptions than in the native case. Note that we require
less number of encryptions than in [22] even with the
same distinguisher due to a better handling of undesired
noise. Further note we use more sophisticated machines
with a higher number of cores than those in [22] and
therefore the noise spreads more easily over them.

D. EC2 Public cloud experiment setup

After successfully applying both the Flush+Reload
and Prime+Probe attacks in our controlled lab setup,
we verify if they are applicable in a realistic cloud.
We chose Amazon EC2 due to its high adoption in the
market. Amazon EC2 uses a modified version of the Xen
hypervisor, which does not utilize de-duplication. This
fact makes the Flush+Reload attack infeasible in their
system. However, guest OS can still allocate huge size
pages in Amazon EC2. Therefore, the Prime+Probe side
channel attack is applicable in EC2 instances.

We first need to have two co-located VMs to success-
fully run the attack. In order to do so, we utilize the same
technique used in [24], i.e., we create cache contention
in a specific set in two VMs and check whether we
observe the contention across co-located VMs. We utilize
medium type instances, which use the same Intel Xeon
2670-v2 that we used in our lab setup.

Once the co-location is achieved, we replicate our
lab scenario, i.e., a virtual machine runs an AES server
while the co-located VM requests encryptions as the
Prime+Probe spy process executes.

azad
Highlight

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

11

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 6. Comparison of the key guess scores in the natively executed scenario using Flush+Reload for three different distinguishers based
on the miss counter (a), difference of means (b) and difference of variances (c), applied to 10,000 traces. The correct key is 180 and clearly
distinguishable in all three cases [37].

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 7. Comparison of results with varying traces in native execution using Flush+Reload for different distinguishers based on the miss
counter (a), difference of means (b) and difference of variances (c) [37].

(a) Miss Counter (b) Difference of Means

Fig. 8. Results in cross-VM execution utilizing Flush+Reload and the miss counter distinguisher (a) and the means distinguisher (b) [37].

E. Amazon (EC2) Results

In this setting, again the T-table location is difficult
to obtain. In consequence, we need to repeat the T-table
searching algorithm several times to find out the cor-
rect set-slice pair. After finding the T-table location we
implemented our experiment with 400,000 encryptions.
The experiments take more time to complete due to the
slow speed of transmission of ciphertexts and plaintexts
between VMs. After obtaining all ciphertext-timing pairs
the three distinguishers are applied to recover the correct
key. The results can be seen in Figure 12. Figure 13
shows that the required number of encryptions is higher
than other scenarios and at least 200,000 encryptions are
needed to recover the correct key.

F. Discussion of Results

Table I summarizes our results. We clearly observe
that the number of encryptions that Flush+Reload re-
quires is smaller than Prime+Probe, i.e., as low as
30,000 traces to successfully recover the key. Since
Prime+Probe monitors an entire set, it is less resilient
by undesired LLC accesses, and more traces are needed
to recover the key. An interesting fact that we observed
is that the miss counter distinguisher needs the same
number of encryptions to successfully recover the key
in both our lab environment and the EC2 public cloud.
We needed 75,000 encryptions (less than a minute) to
recover a 128 bit AES key in a public cloud, demon-
strating that cache side-channel attacks are a threat

azad
Highlight

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

12

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f R
at

io
s

0

0.02

0.04

0.06

0.08

(a) Ctr Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le

-3

-2

-1

0

1

(b) Mean Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le
 s

qu
ar

e

-20

0

20

40

60

(c) Var. Dist.

Fig. 9. Comparison of the scores of key guesses in the natively executed scenario using Prime+Probe for three different distinguishers
based on the miss counter (a), difference of means (b) and difference of variances (c), applied to 200,000 traces. The correct key is 180 and
clearly distinguishable in all three cases.

Number of encryptions
103 104 105

D
iff

er
en

ce
 in

 c
yc

le

-10

-5

0

5

10

(a) Ctr Dist.

Number of encryptions
103 104 105

D
iff

er
en

ce
 in

 c
yc

le

-15

-10

-5

0

5

10

(b) Mean Dist.

Fig. 10. Number of encryptions required to recover the correct AES key using the Prime+Probe attack with mean based distinguishers in
(a), Native scenario (b), cross-VM scenario

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f R
at

io
s

0

0.01

0.02

0.03

(a) Ctr Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le

-1.5

-1

-0.5

0

0.5

1

(b) Mean Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le
 s

qu
ar

e

-30

-20

-10

0

10

20

(c) Var. Dist.

Fig. 11. Comparison of the scores of key guesses in the cross-VM scenario using Prime+Probe for three different distinguishers based on
the miss counter (a), difference of means (b) and difference of variances (c), applied to 200,000 traces. The correct key is 180 and clearly
distinguishable for miss counter and difference of means distinguishers.

across co-resident tenants. In applications such as Netflix
and Dropbox where large amounts of encrypted data is
transferred over the network, the attacker has enough
samples to recover a session key.

VI. COUNTERMEASURES

A. Hardware Based Countermeasures

There are several approaches that can be taken to avoid
cache interference between co-located users. In fact,
Wang et al. [40] proposed two countermeasures to avoid
cache leakage detection. We discuss their applicability to
stop the attacks that have been described in this paper:

– Dynamic Cache Partitioning: This countermea-
sure blocks a cache line being used by an appli-
cation so that it cannot be evicted upon a cache
miss. The countermeasure is not effective against

TABLE I
COMPARISON OF THE REQUIRED ENCRYPTION NUMBER FOR

DIFFERENT ATTACK SCENARIOS AND PLATFORMS

Distinguishers
Nonlinear
Machine

Miss
counter

Mean
based

Variance
based

Flush+Reload
on VMware 30,000 50,000 75,000

Prime+Probe
on VMware 75,000 40,000 200,000

Prime+Probe
on EC2 75,000 100,000 100,000

the Flush+Reload attack, specially if the ”locked”
bit can be changed by the attacker. If the attacker
manages to unlock the bit in the memory block

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

13

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f r
at

io
s

0

0.01

0.02

0.03

0.04

(a) Ctr Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le

-3

-2

-1

0

1

(b) Mean Dist.

Key Guess
0 50 100 150 200 250 300

D
iff

er
en

ce
 in

 c
yc

le
 s

qu
ar

e

-50

0

50

100

(c) Var. Dist.

Fig. 12. Comparison of the scores of key guesses in EC2 using Prime+Probe executed for three different distinguishers based on the
miss counter (a), difference of means (b) and difference of variances (c), applied to 400,000 traces. The correct key is 239 and clearly
distinguishable for all distinguishers.

Number of encryptions
103 104 105

D
iff

er
en

ce
 o

f r
at

io
s

0

0.05

0.1

0.15

0.2

(a) Ctr Dist.

Number of encryptions
103 104 105

D
iff

er
en

ce
 in

 c
yc

le

-15

-10

-5

0

5

10

15

(b) Mean Dist.

Number of encryptions
103 104 105

D
iff

er
en

ce
 in

 c
yc

le
 s

qu
ar

e

-800

-600

-400

-200

0

200

400

(c) Var. Dist.

Fig. 13. Comparison of the scores of key guesses in EC2 using Prime+Probe for three different distinguishers based on the miss counter
(a), difference of means (b) and difference of variances (c), applied to different number of traces.

that shares with the victim, the countermeasure is
not effective. Furthermore, the clflush is a powerful
instruction to ensure cache coherence for those
systems that lack of this ability. Thus, even if the
attacker does not have the right to unlock the cache
line, it is an open question whether such an instruc-
tion is powerful enough to ignore the locking bit.
As for the Prime+Probe attack, the countermeasure
would be effective since the attacker would not have
the ability to fill a specific set if any other process
has locked lines on it.

– Random Permutation Cache: The basic idea be-
hind this countermeasure is to choose a random
cache line in a random set when an eviction needs
to be performed. Again, this countermeasure would
not prevent the Flush+Reload attack, since the
attack does not base its procedure on cache line
eviction but on accesses to a shared memory block.
Thus, the clflush command should still be able to
flush the shared memory block from the cache,
and the attacker should still be able to access
the same memory block in the cache. However,
the Prime+Probe attack would be prevented, since
upon an eviction request made by the victim the
primed set would likely not be evicted due to the
implemented randomness.

– Hardware cryptographic primitives: Hardware

cryptographic primitives: As for cryptography, the
memory based leakage (and thus, the cache attacks)
can be avoided if users utilize hardware imple-
mentations provided by CPU vendors. In fact, if
all the cryptographic operations are performed in
hardware, the CPU cache is not utilized at all and
the cache attacks are no longer possible. This is
the case for AES in Intel processors, which sup-
port Intel AES-NI. For the purposes of this study,
we consider these hardware implementations to be
secure. Nevertheless, these types of attacks might
be able to extract leakage from other cryptographic
(or non-cryptographic) applications such as RSA (as
it was shown in [15], [24]) for which a hardware
implementation is not provided.

B. Software Based Countermeasures

Software countermeasures mainly imply a constant
flow execution, where the attacker cannot distinguish
between accessed and non-accessed patterns. In order to
achieve this behavior, OpenSSL offers a cache leakage
free implementation, where all memory tables are loaded
in the cache prior to the first and last rounds. This
avoids the attack presented in this work, since the flush-
ing/priming resolution is not precise enough to perform
the attack during the last round.

azad
Highlight

azad
Highlight

2332-7766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2016.2550438, IEEE
Transactions on Multi-Scale Computing Systems

14

VII. CONCLUSION

In conclusion, we showed that there is a very real
threat in using insecure software implementations of
AES on virtualized systems without AES-NI hardware
support. We demonstrated two different attacks namely
Flush+Reload and Prime+Probe. In all these attack
scenarios, we succeed in recovering the full AES secret
key using varying number of samples.

REFERENCES

[1] M. Neve and J.-P. Seifert, “Advances on Access-Driven Cache
Attacks on AES,” in SAC, 2007, pp. 147–162.

[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: The Case of AES,” ser. CT-RSA’06.

[3] W.-M. Hu, “Lattice Scheduling and Covert Channels,” in Pro-
ceedings of the 1992 IEEE Symposium on Security and Privacy.

[4] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel
Cryptanalysis of Product Ciphers,” J. Comput. Secur., vol. 8,
no. 2,3, pp. 141–158, 2000.

[5] D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel,” 2002.

[6] Y. Tsunoo, T. Saito, T. Suzaki, and M. Shigeri, “Cryptanalysis
of DES implemented on computers with cache,” in Proc. of
CHES 2003, Springer LNCS, 2003, pp. 62–76.

[7] D. J. Bernstein, “Cache-timing attacks on AES,” 2004, URL:
http://cr.yp.to/papers.html#cachetiming.

[8] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks
against AES,” in CHES 2006, ser. Springer LNCS, vol. 4249,
pp. 201–215.

[9] O. Aciiçmez, W. Schindler, and Çetin K. Koç, “Cache Based
Remote Timing Attack on the AES,” in CT-RSA 2007, pp. 271–
286.

[10] O. Acıiçmez, “Yet Another MicroArchitectural Attack: Exploit-
ing I-Cache,” in Proceedings of the 2007 ACM Workshop on
Computer Security Architecture.

[11] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds,” in CCS ’09, pp. 199–212.

[12] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analy-
sis,” in IEEE: Security & Privacy, 2011.

[13] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
VM side channels and their use to extract private keys,” in CCS
2012, 2012, pp. 305–316.

[14] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice,”
IEEE S&P, pp. 490–505, 2011.

[15] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack,” in (USENIX
Security 14), pp. 719–732.

[16] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a
minute! A fast, Cross-VM attack on AES,” in RAID 2014, pp.
299–319.

[17] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
tenant side-channel attacks in paas clouds,” in CCS, 2014, pp.
990–1003.

[18] G. Irazoqui, M. S. İnci, T. Eisenbarth, and B. Sunar, “Lucky 13
Strikes Back,” ser. ASIA CCS ’15, 2015, pp. 85–96.

[19] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, ““Ooh
Aah... Just a Little Bit”: A Small Amount of Side Channel Can
Go a Long Way.” in CHES, 2014, pp. 75–92.

[20] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,” in
USENIX Security, 2015, pp. 897–912.

[21] Liu, Fangfei and Yarom, Yuval and Ge, Qian and Heiser, Gernot
and Lee, Ruby B, “Last-level cache side-channel attacks are
practical,” in IEEE S&P, 2015, pp. 605–622.

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache
attack that works across cores and defies VM sandboxing?and
its application to AES,” IEEE S&P, 2015.

[23] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache attacks
in javascript and their implications.” in CCS 2015, pp. 1406–
1418.

[24] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud,” IACR Cryptology ePrint Archive,
Tech. Rep., 2015.

[25] “Kernel Samepage Merging,” 2015,
http://kernelnewbies.org/Linux 2 6 32#
head-d3f32e41df508090810388a57efce73f52660ccb.

[26] M. T. Jones, “Anatomy of linux kernel shared mem-
ory,” 2010, http://www.ibm.com/developerworks/linux/library/
l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/.

[27] “Kernel Samepage Merging,” 2015, http://www.linux-kvm.org/
page/KSM#Kernel Samepage Merging.

[28] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory dedupli-
cation as a threat to the guest OS,” in Proceedings of the Fourth
European Workshop on System Security. ACM, 2011, p. 1.

[29] Suzaki, Kuniyasu and Iijima, Kengo and Yagi, Toshiki and
Artho, Cyrille, “Effects of memory randomization, sanitization
and page cache on memory deduplication,” 2012.

[30] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic Reverse
Engineering of Cache Slice Selection in Intel Processors,” in
Euromicro DSD, 2015.

[31] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and
A. Francillon, “Reverse Engineering Intel Last-Level Cache
Complex Addressing Using Performance Counters ,” in RAID
2015, 2015.

[32] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping
the intel last-level cache,” Cryptology ePrint Archive, Report
2015/905, 2015, http://eprint.iacr.org/.

[33] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and
B. Sunar, “A faster and more realistic flush+reload attack on
AES,” in COSADE, 2015, pp. 111–126.

[34] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater,
and J.-L. Willems, “A Practical Implementation of the Timing
Attack,” in Smart Card Research and Applications, pp. 167–
182.

[35] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in CRYPTO 99, pp. 388–397.

[36] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks:
Revealing the secrets of smart cards. Springer, 2008, vol. 31.

[37] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” in CRYPTO ’96, pp.
104–113.

[38] “Amazon EC2 Instances,” http://aws.amazon.com/ec2/
instance-types/.

[39] “Google Compute Engine Instance Types,” https://cloud.google.
com/compute/docs/machine-types.

[40] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks,” in Proceedings
of the 34th Annual International Symposium on Computer
Architecture, 2007.

